K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

Câu 1 xem kỉ đề

\(B,\frac{49^6.5-7^{11}}{\left(-7\right)^{10}.5-2.49^5}=\frac{7^{12}.5-7^{11}}{7^{10}.5-2.7^{10}}=\frac{7^{11}.\left(7.5-1\right)}{7^{10}.\left(5-2\right)}=\frac{7.34}{3}=\frac{238}{3}\)

17 tháng 6 2016

a) A=212.35-\(\frac{2^{12}.3^6}{2^{12}}\)+93+84.35

=212.35-36+36+212.35

=213.35

b)B=496.5-5.\(\frac{7^{11}}{\left(-7\right)^{10}}-2.49^5\)

=496.5-7.5-2.495

=712.5-7.5-2.710

 

Bài 1:

Ta có:

\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

b, Đặt  \(A=\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

\(\Rightarrow\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

Từ (a) \(\Rightarrow\frac{2}{5}A=\frac{100}{101}\)

\(\Rightarrow A=\frac{100}{101}:\frac{2}{5}=\frac{100}{101}.\text{5/2}=\frac{250}{101}\)

Bài 2:

Đặt \(\left(2n+1;3n+2\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)

\(\Rightarrow\left(2n+1;3n+2\right)=1\)

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản

11 tháng 2 2018

1.          Giải 

a,  \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=2.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)

\(=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)

b,   \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=5.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{5.100}{2.101}=\frac{500}{202}=\frac{250}{101}\)

2.    Giải 

Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là d (d thuộc N*) 

=> 2n + 1 \(⋮\)d ; 3n + 2 \(⋮\)

=> 3(2n + 1) \(⋮\)d ; 2(3n + 2) \(⋮\)d

=> 6n + 3 \(⋮\)d , 6n + 4 \(⋮\)

=> (6n + 4) - (6n + 3) \(⋮\)

=> 1 \(⋮\)

=> d = 1 

Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản 

20 tháng 7 2016

a, ta có \(\frac{2.\left(-13\right).9.10}{\left(-3\right).4.\left(-5\right).26}\)=\(\frac{2.\left(-13\right).\left(-3\right).\left(-3\right).2.\left(-5\right)}{\left(-3\right).2.2.\left(-5\right).\left(-2\right).\left(-13\right)}\)

rút gọn đi còn: \(\frac{-3}{-2}\)=\(\frac{3}{2}\)

22 tháng 4 2018

15×8+15×4/12×3

= 15×(8+4)/12×3

=15×12/12×3

=15/3

=5

1 tháng 8 2023

A=212x35-46x92:(22x3)6+84x35

  =212x35-212x34:212x36+212x35

=212(35-34+35):212x36=212x405:(212x36)=1x\(\dfrac{5}{9}\)=\(\dfrac{5}{9}\).

a: =5-78*32

=5-2496

=-2491

b: \(=6\left(9-6\right)=6\cdot3=18\)

c: \(=46\cdot\dfrac{\left(123-42\right)}{81}=46\)

d: \(=181+3-84+8\cdot25\)

=100+200

=300

e: \(=64\cdot35+140\cdot84-1=2240-1+11760\)

=14000-1

=13999

f: \(=3^3+25\cdot8-1=26+200=226\)

g: \(=3+2^4+1=16+4=20\)

h: \(=36:4\cdot3+2\cdot25-1=27+50-1=27+49=76\)