Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2xy - 3x + 5y=4
2x(y-1) + 5y = 4
2x(y-1) + 5y - 5 = 4 - 5
2x(y-1) - 1(y-1) = -1
(2x-1)(y-1) = -1
Ta thấy -1= (-1).1 => Ta có bảng sau:
2x-1 | -1 | 1 |
y-1 | 1 | -1 |
x | 0 | 1 |
y | 2 | 0 |
Như vậy, ta có 2 trường hợp (x;y) thỏa mãn yêu cầu đề bài là ( 0;2 ) ; ( 1;0 )
Hok tốt~
Ta có :
\(\frac{x}{y}=\frac{3}{8}\Leftrightarrow\frac{x}{3}=\frac{y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{8}=\frac{-3x-4y}{-3.3-4.8}=\frac{41}{-41}=\left(-1\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-1\right)\Rightarrow x=\left(-3\right)\\\frac{y}{7}=\left(-1\right)\Rightarrow y=\left(-7\right)\end{cases}}\)
Vậy ...
\(2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{3x+y}{15+2}=\dfrac{1}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{17}.5=\dfrac{5}{17}\\y=\dfrac{1}{17}.2=\dfrac{2}{17}\end{matrix}\right.\)
Tìm \(x,y\inℤ\)
1) xy + 3x - 7y = 21
xy + 3x - 7y - 21 = 0
x (y + 3) - 7 (y + 3) = 0
(y + 3) (x - 7) = 0
\(\Rightarrow\orbr{\begin{cases}y+3=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\y=-3\end{cases}}\)
2) xy + 3x - 2y = 11
xy + 3x - 2y - 6 = 5
x (y + 3) - 2 (y + 3) = 5
(y + 3) (x - 2) = 5
Vì \(x,y\inℤ\) nên \(x-2,y+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
x - 2 | 1 | -1 | 5 | -5 |
y + 3 | 5 | -5 | 1 | -1 |
x | 3 | 1 | 7 | -3 |
y | 2 | -8 | -2 | -4 |
a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)
áp dụng tính chất dãy tỉ số = nhau
\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)
\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)
\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)
\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)
b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)
có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)
\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)
áp dụng t/c dãy tỉ số = nhau
\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)
\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)
\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)
\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)
c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)
thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(=>y=2\)
\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)
d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)
thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)
\(=>x=\dfrac{2.3}{3}=2\)
c, từ đoạn này á
\(\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(< =>\dfrac{y^3}{8}+\dfrac{8y^3}{8}+\dfrac{27y^3}{8}=36\)
\(=>\dfrac{36y^3}{8}=36=>36y^3=8.36=>y^3=8=>y=2\)
Ta có : 3x = 5y = 8z => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}\)
Đặt \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}=k\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=k\\\frac{y}{\frac{1}{5}}=k\\\frac{z}{\frac{1}{8}}=k\end{cases}}\)
=> \(x=\frac{1}{3}k,y=\frac{1}{5}k,z=\frac{1}{8}k\)
=> \(x+y+z=\frac{1}{3}k+\frac{1}{5}k+\frac{1}{8}k\)
=> \(\frac{79}{120}k=158\)
=> \(k=240\)
Do đó : \(x=\frac{1}{3}k=\frac{1}{3}\cdot240=80\)
\(y=\frac{1}{5}k=\frac{1}{5}\cdot240=48\)
\(z=\frac{1}{8}k=\frac{1}{8}\cdot240=30\)
Vậy x = 80,y = 48,z = 30
Sai đề thì phải em
À em cảm ơn để em sửa