K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

Ta có : 3x = 5y = 8z => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}\)

Đặt \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}=k\)

=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=k\\\frac{y}{\frac{1}{5}}=k\\\frac{z}{\frac{1}{8}}=k\end{cases}}\)

=> \(x=\frac{1}{3}k,y=\frac{1}{5}k,z=\frac{1}{8}k\)

=> \(x+y+z=\frac{1}{3}k+\frac{1}{5}k+\frac{1}{8}k\)

=> \(\frac{79}{120}k=158\)

=> \(k=240\)

Do đó : \(x=\frac{1}{3}k=\frac{1}{3}\cdot240=80\)

\(y=\frac{1}{5}k=\frac{1}{5}\cdot240=48\)

\(z=\frac{1}{8}k=\frac{1}{8}\cdot240=30\)

Vậy x = 80,y = 48,z = 30

25 tháng 9 2018

3x = 5y = 8z

=> \(\frac{3x}{120}=\frac{5y}{120}=\frac{8z}{120}\)

=> \(\frac{x}{40}=\frac{y}{24}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{40}=\frac{y}{24}=\frac{z}{15}=\frac{x+y+z}{40+24+15}=2\)

=> \(\hept{\begin{cases}x=2.40=80\\y=2.24=48\\z=2.15=30\end{cases}}\)

Vậy x = 80

       y = 48

       z = 30

1 tháng 8 2018

\(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)

Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y+2\right|\ge0\forall x\\\left|z-3\right|\ge0\forall x\end{cases}\Rightarrow\left|x-1\right|+\left|y+2\right|+\left|z-3\right|\ge0\forall x;y;z}\)

Mà \(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)

\(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\\\left|z-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=3\end{cases}}\)

Vậy \(x=1;y=-2;z=3\)

18 tháng 9 2018

Ai trả lời đúng tớ k cho 

18 tháng 9 2018

\(Tacó:\hept{\begin{cases}6x=5y\\7y=8z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow}}\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}=\frac{x+y+z}{40+48+42}=\frac{69}{130}\)

Suy ra \(\hept{\begin{cases}\frac{x}{40}=\frac{69}{130}\\\frac{y}{48}=\frac{69}{130}\\\frac{z}{42}=\frac{69}{130}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{276}{13}\\y=\frac{1656}{65}\\z=\frac{1449}{65}\end{cases}}}\)

Vậy \(x=\frac{276}{13};y=\frac{1656}{65};z=\frac{1449}{65}\)

7 tháng 12 2015

1,x/7=y/3 va x-24=y

=>x/7=y/3 va x-y=24

adtcdts=n: 

x/7=y/3=x-y/7-3=24/4=6

Suy ra :x/7=6=>x=6.742

y/3=6=>y=3.6=18

2,Adtcdts=n:

x/5=y/7=z/2=y-x/7-5=48/2=24

suy ra : x/5=24=>x=120

y/7=24=>y=168

z/2=24=>z=48

1 tháng 12 2018

mở sách giải ra mà cop

Giải:

Ta có: 3x=yx1=y3⇒x4=y12

5y=4zy4=z5⇒y12=z15

x4=y12=z15

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x4=y12=z15=6x24=7y84=8z120=6x+7y+8z24+84+120=456228=2

+) x4=2⇒x=8

+) y12=2⇒y=24

+) z15=2⇒z=30

Vậy bộ số (x;y;z) là (8;24;30)

21 tháng 8 2021

Áp dụng tc của dãy tỉ số = nhau ta được :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)

Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)

\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy ...

10 tháng 2 2022

undefinedbạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))