Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{4-x}}{16^5}=32^6\)
\(\Rightarrow\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
\(\Rightarrow\frac{2^{4-x}}{2^{20}}=2^{30}\)
\(\Rightarrow2^{4-x}=2^{30}.2^{20}\)
\(\Rightarrow2^{4-x}=2^{50}\)
\(\Rightarrow4-x=50\)
\(\Rightarrow x=-46\)
2) x4 -16 =0 => x4 =16 => x4 = 44 hoặc (-4)4 => x = 4 hoặc -4
a, \(3^{2x+2}=9^{10}\\ 3^{2x+2}=\left(3^2\right)^{10}\\ 3^{2x+2}=3^{20}\\ \Rightarrow2x+2=20\\ \Rightarrow2x=18\\ \Rightarrow x=9\)Vậy x = 9
b, \(3^{3x}=27^{13}\\ 3^{3x}=\left(3^3\right)^{13}\\ 3^{3x}=3^{39}\\ \Rightarrow3x=39\\ \Rightarrow x=13\)Vậy x = 13
c, \(2^x=4^6\cdot16^3\\ 2^x=\left(2^2\right)^6\cdot\left(2^4\right)^3\\ 2^x=2^{12}\cdot2^{12}\\ 2^x=2^{24}\\ \Rightarrow x=24\)Vậy x = 24
d, \(2^x=32^5\cdot64^6\\ 2^x=\left(2^5\right)^5\cdot\left(2^6\right)^6\\ 2^x=2^{25}\cdot2^{36}\\ 2^x=2^{61}\\ \Rightarrow x=61\)Vậy x = 61
\(\frac{625}{5^n}=5^3\)
\(\Leftrightarrow5^3\cdot5^n=625\)
\(\Leftrightarrow5^{3+n}=625\)
\(\Leftrightarrow5^{3+n}=5^4\)
\(\Leftrightarrow3+n=4\Leftrightarrow n=1\)
\(32< 2^x< 512\)
\(\Leftrightarrow2^5< 2^x< 2^9\)
\(\Leftrightarrow5< x< 9\)
\(\Leftrightarrow x\in\left\{6;7;8\right\}\)
1/ \(=-\frac{64}{27}.\frac{243}{32}\)
\(=-\frac{243}{16}\)
2/ \(=\frac{1}{81}.\frac{5361441}{64}\)
\(=\frac{6561}{64}\)
3/ \(=-\frac{2197}{512}.36,71356045\)
\(=-\frac{2048}{13}\)
tíc mình nha
1\(\left(-\frac{4}{3}\right)^3.\left(\frac{9}{16}\right)^5=-\frac{2187}{16384}\)
2\(\left(\frac{1}{3}\right)^4.\left(-\frac{9}{2}\right)^6=\frac{6561}{64}\)
3\(\left(-\frac{13}{8}\right)^3.\left(-\frac{32}{13}\right)^4=-41,00457607\)
\(\dfrac{2^{4-x}}{16^5}=32^6\)
\(\Leftrightarrow2^{4-x}=16^5.32^6\)
\(\Rightarrow2^{4-x}=\left(2^4\right)^5.\left(2^5\right)^6\)
\(\Rightarrow2^{4-x}=2^{20}.2^{30}\)
\(\Rightarrow2^{4-x}=2^{50}\)
\(\Rightarrow4-x=50\)
\(\Rightarrow x=-46\)
Vậy...
\(\dfrac{2^{4-x}}{16^5}=32^6\Rightarrow\dfrac{2^{4-x}}{2^{20}}=2^{30}\Rightarrow2^{4-x}=2^{50}\Rightarrow x=-46\)