K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2016

22016 - (22015 + 22014 + 22013 + ... + 22 + 2 + 1)=145

23 tháng 9 2016

Đặt A = 22015 + 22014 + 22013 + ... + 22 + 2 + 1

=> 2A = 2 + 22 + 23 + ...... + 22015 + 22016

=> 2A - A = 22016 - 1

=> A = 22016 - 1

23 tháng 9 2016

cái này là lớp 6 mà

đặt tên biểu thức trên là A

Ta có :

\(A=2^{2015}+2^{2014}+2^{2013}+...+2^2+2^2+1\)

\(2A=2.\left(2^{2015}+2^{2014}+2^{2013}+...+2^2+2+1\right)\)

\(2A=2^{2016}+2^{2015}+2^{2014}+...+2^3+2^2+2\)

\(2A-A=\left(2^{2016}+2^{2015}+2^{2014}+...+2^3+2^2+2\right)-\left(2^{2015}+2^{2014}+2^{2013}+...+2^2+2+1\right)\)\(A=2^{2016}-1\)

Nguyễn Quang Trung CTV làm sơ ý quá

19 tháng 9 2016

a) Đặt \(A=2^{2016}-2^{2015}+2^{2014}-2^{2013}+...+2^2-2^1\)

\(\Rightarrow2A=2^{2017}-2^{2016}+2^{2015}-2^{2014}+...+2^3-2^2\)

\(\Rightarrow2A+A=\left(2^{2017}-2^{2015}+2^{2014}-2^{2013}+...+2^3-2^2\right)+\left(2^{2016}-2^{2015}+2^{2014}-2^{2013}+...+2^2+2^1\right)\)

\(\Rightarrow3A=2^{2017}+1\)

\(\Rightarrow A=\frac{2^{2017}+1}{3}\)

b) Đặt \(B=3^{1000}-3^{999}+3^{998}-3^{997}+...+3^2-3^1+3^0\)

\(\Rightarrow3B=3^{1001}-3^{1000}+3^{999}-3^{997}+...+3^3-3^2+3^1\)

\(\Rightarrow3B+B=\left(3^{1001}-3^{1000}+3^{999}-3^{998}+...+3^3-3^2+3^1\right)+\left(3^{1000}-3^{999}+3^{998}-3^{997}+...+3^2-3^1+3^0\right)\)

\(\Rightarrow4B=3^{1001}+3^0\)

\(\Rightarrow B=\frac{3^{1001}+1}{4}\)

 

19 tháng 9 2016

a) Đặt A = 22016 - 22015 + 22014 - 22013 + ... + 22 - 21

2A = 22017 - 22016 + 22015 - 22014 + ... + 23 - 22

2A + A = (22017 - 22016 + 22015 - 22014 + ... + 23 - 22) + (22016 - 22015 + 22014 - 22013 + ... + 22 - 21)

3A = 22017 - 21

3A = 22017 - 2

\(A=\frac{2^{2017}-2}{3}\)

b) lm tương tự câu a

15 tháng 12 2016

M=22016 -(22015+22014+...+21+20)

M=22016-\(\frac{2^{2015+1}-1}{2-1}\)

M=22016-(22016-1)

M=22016-22016 +1

M=1

CHI TIET HON THI NHAN CHO MINH
MINH DUNG CONG THUC DO
:)

Đặt \(B=2^{2014}+2^{2013}+...+2+1\)

\(\Leftrightarrow2B=2^{2015}+2^{2014}+...+2^2+2\)

\(\Leftrightarrow B=2^{2015}-1\)

\(A=2^{2015}-B=2^{2015}-2^{2015}+1=1\)

26 tháng 9 2016

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

23 tháng 9 2016

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)

12 tháng 5 2015

2 S = 22016 - ( 22015 + 2 2014 + 22013 +.....+ 2+ 2 2 + 2 )

2S - S = 2 2016 + 1

13 tháng 5 2015

S = 22015- 22014- 22013-.......-22-21-20

2S = 22016 - 22015 -22014 - 22013 -..........- 23 -22 -21 

2S -S = 22016 -22015 -22014 -22013 -....- 23-2-21  - 22015 + 22014 + 22013 +.....+ 23 +22+21+2

= 22016 - 2x22015 + 20

20=1

16 tháng 11 2015

Ta có: A = 22015  -  22014  -  22013  -   ...  -  2 - 1

nên 2A =  22016  -  22015  -  22014  - ... - 22 - 2

2A - A = (22016  -  22015  -  22014  - ... - 22 - 2)  -  (22015  -  22014  -  22013  -   ...  -  2 - 1)

A = 22016  -  2.22015 + 1

A = 22016  -  22016 + 1 = 1

Vậy, 2015A = 20151 = 2015

 

15 tháng 12 2016

= 1  nhe