Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)
\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)
\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)
Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)
1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)
\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)
\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)
\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)
\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)
\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)
Mà \(2015^{2014}< 2013.2016^{2014}.2015\)
nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Vậy \(2015^{2016}>2016^{2015}.\)
M=2x4+3x2y2+y4+y2 = (2x4+2x2y2) +(x2y2+y4)+y2
= 2x2(x2 + y2) + y2(x2 + y2) + y2
= 2x2 + 2y2 = 2(x2 + y2) = 2
Vậy M = 2
Ta có: \(x^2y^2=1\Rightarrow\) x = 1 và y = 1
Thay x=1 và y=1 vào đa thức trên ta có: M = \(2.1^4+3.1+1^4+1^2\)
M = 2 + 3 + 1 + 1 = 7
M = 2^2018 - (2^2017 + 2^2016 + ...+ 2^1+2^0)
Đặt N = 2^2017+2^2016+...+2^1+2^0
=> 2N=2^2018 +2^2017+...+2^2+2^1
=> 2N-N = 2^2018 - 2^0
N = 2^2018 - 1
Thay N vào M có
M = 2^2018 - (2^2018-1)
M = 2^2018 - 2^2018 + 1
M = 1
Ta có : \(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+.....+\frac{1}{2^{99}}\)
\(\Rightarrow2^2A=2+\frac{1}{2}+\frac{1}{2^3}+.....+\frac{1}{2^{97}}\)
\(\Rightarrow4A-A=2-\frac{1}{2^{99}}\)
\(\Rightarrow3A=2-\frac{1}{2^{99}}\)
\(\Rightarrow A=\frac{2-\frac{1}{2^{99}}}{3}\)
M=22016 -(22015+22014+...+21+20)
M=22016-\(\frac{2^{2015+1}-1}{2-1}\)
M=22016-(22016-1)
M=22016-22016 +1
M=1
CHI TIET HON THI NHAN CHO MINH
MINH DUNG CONG THUC DO
:)