Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.(2600+6400)-3.x=1200
9000-3.x=1200
3.x=9000-1200
3.x=7800
x=7800/3
x=2600
Vậy x=2600
b.[(6.x-72):2-84].28=5628
(6.x-72):2-84=5628:28
(6.x-72):2-84=201
(6.x-72):2=201+84
(6.x-72):2=285
6.x-72=285.2
6.x-72=570
6.x=570+72
6.x=642
x=642:6
x=107
vậy x=107
Đây bạn
Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.
Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha
\(\left(x-2\right)\left(x-4\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2< 0\\x-4>0\end{matrix}\right.=>4< x< 2\left(1\right)\\\left\{{}\begin{matrix}x-2>0\\x-4< 0\end{matrix}\right.=>2< x< 4\left(2\right)}\end{matrix}\right.\)(1 ) vô lý=> loại
=> (x-2).(x-4)<0 <=> 2<x<4
b. ta có\(x^2+1>0\forall x\)
=>(x2 -1).(x2+1)<0 <=> (x2 -1)<0 <=> x2<1
<=> -1<x<1
câu c bạn làm tương tự
a) 1010 và 48 . 505
Ta có: 48.505 = 24.2.505 = 24.1005 = 24.(102)5 = 24.1010
\(\Rightarrow\)1010 < 24.1010
hay 1010 < 48.505
b) 321 và 231
Ta có: 321 = 3.320 = 3.(32)10 = 3.910
231 = 2.230 = 2.(23)10 = 2.810
\(\Rightarrow\)3.910 > 2.810
(vì 3 > 2; 910 > 810)
hay 321 > 231
A=2+22+23+24+...+212
A=(2+22+23)+(24+25+26)+...+(210+211+212)
A=14.1+23.14+...+29.14
A=14(1+23+...+29)\(⋮\)7
Vậy A\(⋮\)7
\(A=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)=7\cdot\left(2+...+2^{10}\right)⋮7\)
\(A=2+2^2+2^3+....+2^{12}\\ \Rightarrow A=\left(2+2^2+2^3\right)+.....+\left(2^{10}+2^{11}+2^{12}\right)\\ \Rightarrow A=2.\left(1+2+2^2\right)+....+2^{10}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+....+2^{10}.7\\ \Rightarrow A=7\left(2+....+2^{10}\right)⋮7\)
\(\left(20.2^4-12.2^3-48.2^2\right)^2:\left(-8\right)^3\)
\(=\left(20.16-12.9-48.4\right)^2:\left(-8\right)^3\)
\(=32^2:-512\)
\(=1024:-512=-2\)
\(\left(-2\right)\left(-3\right):\left(-1\right)-\left(-3\right)\left(-2\right):\left(-6\right)+\left(-2\right)\)
\(=-6-\left(-1\right)+\left(-2\right)\)
\(=-7\)
\(1.\left(-2\right)-\left(-3\right).\left(-4\right)-\left(-2\right).\left(-3\right)\)
\(=\left(-2\right)-12-6\)
\(=-20\)
Cảm ơn bạn nhiều lắm