Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E 30
a.Áp dụng tính chất tổng 3 góc trong 1 tam giác ta có:
góc A+góc B+góc C=180
hay 90 +góc B+30=180
góc B=60 độ
Xét tgiac ABH và tgiac ADH có:
AH chung
góc AHB =góc AHD=90
HB=HD(gt)
Vậy tgiac ABH=tgiac ADH(c.g.c)
=> AB=AD(2 cạnh tương ứng)
=>tgiac ABD cân tại A mà có góc B=60 độ
Vậy tgiac ABD đều
b.tgiac ABD đều => góc BAD=60 độ
vậy ta có góc BAD+góc DAC=90
hay 60+góc DAC=90
góc DAC=30 độ
Xét tgiac ADC có góc DAC=góc DCA=30
Vậy tgiac ADC cân tại D=> AD=DC
Xét tgiacADH và tgiac CDE có
góc DEC=góc DHA=90
AD=CD(cmt)
góc CDE=góc ADH(đối đỉnh)
=> tgiac ADH=tgiac CDE(ch-gc)
=> AH= CE(2 cạnh tương ứng)
c.theo câu b ta có DE=DH(2 cạnh tương ứng)
Vậy tgiac DEH cân tại E
=> góc DEH=(180-góc EDH):2 (1)
tgiac DAC cân tại D
=> góc DAC=(180-góc ADC):2 (2)
mà gócADC=gócEDH(đối đỉnh) (3)
từ (1);(2) và (3) ta có góc DEH=góc DAC
mà góc DAC và góc DEH ở vị trí so le trong
Nên theo tiên đề oclit ta có HE//AC
a, Xét tam giác ABC cân tại A, ta có:
góc B = góc C ( tính chất tam giác cân )
Xét tam giác ABC ta có:
góc A + góc B + góc C = 180 độ (định lý tổng ba góc trong tam giác)
mà góc A= 120 độ (gt) , góc B = góc C ( cmt)
-> 120 độ + 2B = 180 độ
-> 2B = 180-120=60 độ
-> B=60 :2=30 độ.
Vì trong tam giác cân đường phân giác cũng đồng thời là đường cao
-> AD vuông góc với BC
vì AD song song với BE
mà góc ADC và góc EBC là 2 góc đồng vị
-> ADC = EBC -> EBC = 90 độ
Ta có : EBC = ABC + ABE
mà EBC = 90 độ , ABC=30 độ
-> ABE = 90-30=60 độ
Ta có : BAE + BAC = 180 độ ( 2 góc kề bù )
mà BAC = 120 đô
-> BAE = 180-120 =60 độ
XÉT tam giác ABE có góc BAE = 60 độ , góc ABE = 60độ
-> tam giác ABE đều
a, Xét tam giác ABC cân tại A, ta có:
góc B = góc C ( tính chất tam giác cân )
Xét tam giác ABC ta có:
góc A + góc B + góc C = 180 độ (định lý tổng ba góc trong tam giác)
mà góc A= 120 độ (gt) , góc B = góc C ( cmt)
-> 120 độ + 2B = 180 độ
-> 2B = 180-120=60 độ
-> B=60 :2=30 độ.
Vì trong tam giác cân đường phân giác cũng đồng thời là đường cao
-> AD vuông góc với BC
vì AD song song với BE
mà góc ADC và góc EBC là 2 góc đồng vị
-> ADC = EBC -> EBC = 90 độ
Ta có : EBC = ABC + ABE
mà EBC = 90 độ , ABC=30 độ
-> ABE = 90-30=60 độ
Ta có : BAE + BAC = 180 độ ( 2 góc kề bù )
mà BAC = 120 đô
-> BAE = 180-120 =60 độ
XÉT tam giác ABE có góc BAE = 60 độ , góc ABE = 60độ
-> tam giác ABE đều
a, Xét tam giác DAE và tam giác BAC có
DAE = BAC ( đối đỉnh )
AD = AB ( gt)
AE= AC ( gt)
=> tam giác DAE = tam giác BAC
=> BC= DE
b, ta có DAE = BAC = 90 độ ( 2 góc đối đỉnh )
lại có BAD = CAE đối đỉnh
=> BAD=CAE = 360 - (BaC + DAE) tất cả trên 2
<=> BAD= 360 -180 tâts cả trên 2
<=> BAD = 180 trên 2
<=> BAD = 90 độ
=> tam giác BAD vuông lại A
mà AB =AD (gt)
=> BAD vuông cân
=> DBA = BDA = 90 trên 2 = 45 độ
Chứng mình tương tự tam giác CAE vuông cân
=>AEC=ACE= 90 trên 2 = 45 độ
=> DBA=AEC=45 độ
mà chúng ở vị trí sole trong
=> BD // CE
a, Xét tg ABH và tg ADH có :
BH=DH(gt)
AH chung
∠AHB=∠AHC (=90 độ)
=> tg ABH = tg ADH ( c.g.c)
=> AB = AB ( 2 cạnh tương ứng )
=> tg ABD cân (1)
Trong tg ABC có : ∠A+∠B+∠C= 180 độ
=> 1/2∠B+∠B=90 độ
=> ∠B= 60 độ (2)
Từ (1) , (2) => tg ABD là tg đều
b, +) Ta có : ∠BAD + ∠DAC = ∠BAC
=> 60 độ + ∠DAC = 90 độ
=>∠DAC = 30 độ
Lại có : ∠DCA = 90 độ - 60 độ = 30 độ (3)
=> ∠DAC = ∠DCA ( =30 độ )
=> tg DAC cân tại D => AD=CD
+) Xét tg HDA và tg EDC có :
AD=CD(cmt)
∠HDA= ∠EDC ( đđ')
=> tg HDA = tg EDC ( ch-gn)
=> DH=DE( 2 cạnh tương ứng )
=> tg DHE cân tại D
+)Lại có : ∠ADC= 180 độ - ∠DAC -∠DCA= 120 độ
=>∠ADC=∠HDE(=120 độ)
=> ∠DHE = 180 - 120/2 = 30 (4)
Từ (3),(4)=> ∠DCA= ∠DHE
Mà chúng ở vị trí SLT => HE//AC
a, Có BE // AD (gt)
=> góc EBA = góc BAD (2 góc so le trong)
=> góc EBA = góc BAD = 1/2 góc BAC = 120o/2 = 60o (1)
Tam giác BEA có: góc BEA + góc EBA = góc BAC (t/c góc ngoài)
=> góc BEA = góc BAC - góc EBA = 120o - 60o = 60o (2)
Từ (1)(2) => Tam giác BEA cân
Mà tam giác BEA có : góc EBA = 60o (c/m trên)
=> tam giác BEA đều
b, Tam giác ABC cân (gt) => góc ABc = góc ACB = 90o - góc BAC/2 = 90o - 120o/2 = 30o
Tam giác BEC có: góc BEC + góc ECB +góc CBE = 180o ( đ/lí tổng 3 góc )
=> góc CBE = 180o - góc BEC - góc ECB
=>góc CBE = 180o - 60o - 30o = 90o
Có: Góc ECB < góc BEC < góc CBE (vì 30o < 60o < 90o)
=> EB < BC < EC (quan hệ giữa góc và cạnh đối diện trong tam giác)
a.
EAB + BAC = 1800
EAB + 1200 = 1800
EAB = 1800 - 1200
EAB = 600
AD là tia phân giác của BAC
=> BAD = DAC = BAC/2 = 1200/2 = 600
AD // EB
=> DAB = EBA (2 góc so le trong)
mà DAB = EAB ( = 600 )
=> EBA = EAB
=> Tam giác EAB cân tại E
mà EAB = 600
=> Tam giác ABE đều
b.
BAC = 1200
=> Tam giác ABC tù
=> BC là cạnh lớn nhất
=> BC < AB
mà AB = EB (tam giác ABE đều)
=> BC < EB (1)
Tam giác ABC có:
BC < AB + AC (bất đẳng thức tam giác)
mà AB = AE (tam giác ABE đều)
=> BC < AB + AE
=> BC < EC (2)
Từ (1) và (2), ta có:
EC > BC > EB