K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2024

a,  Xét tg ABH và tg ADH có : 

       BH=DH(gt)

       AH chung 

        ∠AHB=∠AHC (=90 độ)

=> tg ABH = tg ADH ( c.g.c) 

=> AB = AB ( 2 cạnh tương ứng ) 

=>  tg ABD cân (1) 

Trong tg ABC có : ∠A+∠B+∠C= 180 độ

=> 1/2∠B+∠B=90 độ 

=> ∠B= 60 độ (2) 

Từ (1) , (2) => tg ABD là tg đều 

b, +) Ta có : ∠BAD + ∠DAC = ∠BAC

=> 60 độ + ∠DAC = 90 độ

=>∠DAC = 30 độ

Lại có :  ∠DCA = 90 độ - 60 độ = 30 độ (3)

=> ∠DAC = ∠DCA ( =30 độ ) 

=> tg DAC cân tại D => AD=CD 

+) Xét tg HDA và tg EDC có : 

AD=CD(cmt)

 ∠HDA= ∠EDC ( đđ')

=> tg HDA = tg EDC ( ch-gn) 

=> DH=DE( 2 cạnh tương ứng ) 

=> tg DHE cân tại D

+)Lại có : ∠ADC= 180 độ -  ∠DAC -∠DCA= 120 độ

=>∠ADC=∠HDE(=120 độ)

=> ∠DHE = 180 - 120/2 = 30 (4)

Từ (3),(4)=> ∠DCA= ∠DHE

Mà chúng ở vị trí SLT => HE//AC

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
26 tháng 4 2018

a, Xét tam giác DAE và tam giác BAC có

      DAE = BAC ( đối đỉnh )

      AD = AB ( gt)

     AE= AC ( gt) 

=> tam giác DAE = tam giác BAC 

=> BC= DE

b, ta có  DAE = BAC = 90 độ ( 2 góc đối đỉnh )

 lại có BAD = CAE đối đỉnh 

=> BAD=CAE = 360 - (BaC + DAE)   tất cả trên 2 

<=> BAD= 360 -180  tâts cả trên 2 
<=> BAD = 180 trên 2

<=> BAD = 90 độ 

=> tam giác BAD vuông lại A

mà AB =AD (gt)

=> BAD vuông cân

=> DBA = BDA = 90 trên 2 = 45 độ

Chứng mình tương tự tam giác CAE vuông cân 

=>AEC=ACE= 90 trên 2 = 45 độ 

=> DBA=AEC=45 độ

mà chúng ở vị trí sole trong 

=> BD // CE

Bài 12.Cho tam giác ABC có AB>AC.Vẽ AH vuông góc BC.CMR AB2-AC2=HB2-HC2Bài 13.Cho tam giác ABC vuông tại A.Vẽ AH vuông góc BC.Biết AH=1.CMR BC2=HB2+HC2+2Bài 14.Cho tam giác ABC vuông cân tại A,AB=1.Qua A vẽ đường thẳng xy bất kì.Vẽ AH và BK cùng vuông góc xy.CMRa)HB=AK                  b)Tính BH2+CK2Bài 15.Cho tam giác ABC vuông tại A,AB=6,góc B=30 độ.Tia phân giác góc C cắt AB tại D.Tính AB,ADBài 16.Cho tam giác ABC vuông...
Đọc tiếp

Bài 12.Cho tam giác ABC có AB>AC.Vẽ AH vuông góc BC.CMR AB2-AC2=HB2-HC2

Bài 13.Cho tam giác ABC vuông tại A.Vẽ AH vuông góc BC.Biết AH=1.CMR BC2=HB2+HC2+2

Bài 14.Cho tam giác ABC vuông cân tại A,AB=1.Qua A vẽ đường thẳng xy bất kì.Vẽ AH và BK cùng vuông góc xy.CMR

a)HB=AK                  b)Tính BH2+CK2

Bài 15.Cho tam giác ABC vuông tại A,AB=6,góc B=30 độ.Tia phân giác góc C cắt AB tại D.Tính AB,AD

Bài 16.Cho tam giác ABC vuông cân tại A.Kẻ 1 đường thẳng d qua A.Từ B,C kẻ BH,CE vuông góc d(H,E nằm trên d).Chứng minh rằng tổng BH2+CE2 không phụ thuộc vị trí d

Bài 17.Cho O là điểm tùy ý nằm trong tam giác ABC.Vẽ OA1,OB1,OC1 lần lượt vuông góc với BC,CA,AB.CMR AB12+BC12+CA12=AC12+BA12+CB12

Bài 18.Cho tam giác ABC vuông tại A.Kẻ AH vuông góc BC(H nằm trên BC).Điểm D nằm giữa A và H.Trên tia đối của tia HA,lấy điểm E sao cho HE=AD.Đường thẳng vuông góc AH tại D cắt AC tại F.Chứng minh EB vuông góc EF

1
6 tháng 2 2017

B12:

Có:Tam giác ABH vuông tại H

     ________ACH__________

=>AB2-AC2=(AH2+BH2)-(AH2+CH2)=BH2-CH2.

2 tháng 4 2022

...

2 tháng 5 2022

có ai bt ko giúp vs ạ