K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

khó .mình chịu

6 tháng 11 2017

Hình như bài này lớp 6 cx có

k cho mk nha

12 tháng 10 2019

a) Áp dụng BĐT Cauchy cho 2 số dương:

\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=2xy\)

\(y^2+z^2\ge2\sqrt{\left(yz\right)^2}=2yz\)

\(x^2+z^2\ge2\sqrt{\left(xz\right)^2}=2xz\)

Cộng từ vế của các BĐT trên:

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=y\end{cases}}\Leftrightarrow x=y=z\))

12 tháng 10 2019

b) \(2x^2+2y^2+z^2+2xy+2yz+2xz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+10x+25\right)\)

\(+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)(1)

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)nên (1) xảy ra

\(\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}\)

26 tháng 7 2019

a) xy - 2x + y = -2

=> x(y - 2) + (y - 2) = -4

=> (x + 1)(y - 2) = -4

=> x + 1;y - 2 \(\in\)Ư(-4) = {1; -1; 2; -2; 4; -4}

Lập bamhr :

x + 1 1 -1 2 -2 4 -4
y - 2-4 4 -2 2 -1 1
   x 0 -2 1 -3 3 -5
   y -2 6 0 4 1 3

Vậy ...

b) -xy + 3x - y = 1

=> -x(y - 3) - (y - 3) = 4

=> (-x - 1)(y - 3) = 4

=> -x - 1; y - 3 Ư(4) = {1; -1; 2; -2; 4; -4}

Lập bảng :

  -x - 1  1  -1  2  -2  4 -4
  y - 3  4  -4  2  -2  1  -1
    x -2 0 -3 1 -5 3
   y 7 -1 5 1 4 2

Vậy ...

AH
Akai Haruma
Giáo viên
8 tháng 7 2024

a/

$xy-2x+y=13$

$\Rightarrow x(y-2)+(y-2)=11$

$\Rightarrow (y-2)(x+1)=11$

Với $x,y$ là số nguyên thì $x+1, y-2$ cũng là số nguyên. Mà tích của chúng bằng $11$ nên ta xét các TH sau:
TH1: $x+1=1, y-2=11\Rightarrow x=0; y=13$

TH2: $x+1=-1, y-2=-11\Rightarrow x=-2; y=-9$

TH3: $x+1=11, y-2=1\Rightarrow x=10; y=3$

TH4: $x+1=-11, y-2=-1\Rightarrow x=-12; y=1$

AH
Akai Haruma
Giáo viên
8 tháng 7 2024

Câu b bạn xem lại đề. $2y$ hay $3y$ vậy bạn?

10 tháng 9 2018

1/

a. \(3x\left(5x^2-2x-1\right)\)

\(=15x^3-6x^2-3x\)

b. \(\left(x^2-2xy+3\right)\left(-xy\right)\)

\(=-x^3y+2x^2y^2-3xy\)

c. \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)

\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)

\(=2x^3-x^2y-2xy^2\)

10 tháng 9 2018

a) thiếu đề

b) \(\left(3x-3\right)\left(5-21x\right)+\left(7x+4\right)\left(9x-5\right)=44\)

\(15x-63x^2-15+63x+63x^2-35x+36x-20=44\)

\(79x-35=40\)

\(79x=75\)

\(x=\frac{75}{79}\)

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

30 tháng 8 2016

bài x^4-7^y=2014 dùng đồng dư là ra nhé bạn

31 tháng 8 2016

mình cũng chịu