K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

22 tháng 5 2018

Nguyên việt hiếu tự đặng tự trả lời nice  :)) 

22 tháng 5 2018

ê hiếu  t có 1 cách nhưng mà bị ngược dấu :))  có cần t làm ko :))))

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

10 tháng 2 2019

a) Áp dụng bài toán sau : a + b + c = 0 \(\Rightarrow\)a3 + b3 + c3 = 3abc

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}\)

Ta có : \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)

\(A=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.3.\frac{1}{xyz}=3\)

b)  x2 + y2 + z2 - xy - 3y - 2z + 4 = 0

4x2 + 4y2 + 4z2 - 4xy - 12y - 8z + 16 = 0

( 4x2 - 4xy + y2 ) + ( 3y2 - 12y + 12 ) + ( 4z2 - 8z + 4 ) = 0

( 2x - y )2 + 3 ( y - 2 )2 + 4 ( z - 1 )2 = 0

Ta có : ( 2x - y )2 \(\ge\)0 ;  3 ( y - 2 )2 \(\ge\)0 ;  4 ( z - 1 )2 \(\ge\)0

Mà ( 2x - y )2 + 3 ( y - 2 )2 + 4 ( z - 1 )2 = 0 

\(\Rightarrow\)\(\hept{\begin{cases}2x-y=0\\y-2=0\\z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}}\)

Vậy ....

1) Cho phương trình ẩn x, tham số n \(\varepsilon\)N:1 + 1/10(x - 1) + 2 + 1/10(x - 2) + 3 + 1/10(x - 3) + ........ + n +1/10(x - n) = xa) Tìm điều kiện của n để phương trình có ngiệm x>0;b) Với các giá trị nào của n thì phương trình có nghiệm nguyên, dương. Tìm các nghiệm đó.2) Rút gọn biểu thức sau:A = (x3 - y3){\(\frac{x^2+xy}{x^2+xy+y^2}\)-...
Đọc tiếp

1) Cho phương trình ẩn x, tham số n \(\varepsilon\)N:

1 + 1/10(x - 1) + 2 + 1/10(x - 2) + 3 + 1/10(x - 3) + ........ + n +1/10(x - n) = x

a) Tìm điều kiện của n để phương trình có ngiệm x>0;

b) Với các giá trị nào của n thì phương trình có nghiệm nguyên, dương. Tìm các nghiệm đó.

2) Rút gọn biểu thức sau:

A = (x- y3){\(\frac{x^2+xy}{x^2+xy+y^2}\)- [\(\frac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\frac{y}{y-x}\)]:[\(\frac{x-y}{x}-\frac{x}{x-y}\)]}

3) Tìm các số a, b để đa thức P(x) luôn chia hết cho đa thức Q(x) với:

P(x) = 6x- 7x+ ax+ 3x + 2

Q(x) = x- x + b

4) Xác định đa thức bậc ba F(x). Biết F(0) = 8; F(1) = 20; F(2) = 2; F(3) = 2004:

F(x) = ax(x - 1)(x - 2) + bx(x - 1) + cx + d

5) C/m rằng: Hiệu các bình phương của 2 số tự nhiên lẻ bất kì luôn chia hết cho 8

6) Cho biểu thức M = \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)và B = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

a) Chứng minh rằng nếu A = 1 thì B = 0.

b) Ngược lại nếu B =0 thì A = 0 có đúng không? Vì sao?

                                                                              - The End -

 

0
16 tháng 11 2017

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

55555555555555555

666666666666666666666666666

88888888888888888888

16 tháng 3 2019

1 ) Đề bài > not \(\ge\)

Giả sử đpcm là đúng , khi đó , ta có :

\(x^2+y^2+8>xy+2x+2y\)

\(\Leftrightarrow2x^2+2y^2+16>2xy+4x+4y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8>0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8>0\left(1\right)\)

Do \(\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8\ge8>0\forall x;y\left(2\right)\)

Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng => đpcm

2 ) ĐK : a ; b ; c không âm

Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ( cái này bạn áp dụng BĐT Cô - si để c/m ) , ta có :

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{a+b+b+c+c+a}=\frac{9}{6.2}=\frac{3}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=2\)

3 ) Áp dụng BĐT Cô - si cho các cặp số không âm , ta có :

\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\left(1\right)\)

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\left(2\right)\)

Từ ( 1 ) ; ( 2 ) , ta có : \(2x^2+2y^2+2z^2+x^2+y^2+z^2+3\ge2xy+2yz+2xz+2x+2y+2z\)

\(\Rightarrow3\left(x^2+y^2+z^2+1\right)\ge2\left(x+y+z+2xy+2xz+2yz\right)=2.6=12\)

\(\Rightarrow x^2+y^2+z^2+1\ge4\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

25 tháng 5 2020

ÁP dụng BĐT Shwars có:

VT=\(\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)