Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)
suy ra Amin=-1
\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10
4.a) \(2x^2-10x-3x-2x^2-26=0\)
\(-13x-26=0\Rightarrow-13\left(x+2\right)=0\)
\(\Rightarrow x=-2\)
b) \(2\left(x+5\right)-x^2-5x=0\)
\(2x+10-x^2-5x=0\Leftrightarrow-x^2-3x+10=0\)
\(-\left(x^2+3x-10\right)=0\)
\(-\left(x^2-2x+5x-10\right)=-\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\)
\(-\left(x-2\right)\left(x+5\right)=0\)
\(\left\{{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
c) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\left(x-8\right)\left(3x+2\right)=0\)
\(\left\{{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
d) \(x^3+x^2-4x-4=0\)
\(x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
g) \(\left(x-1\right)\left(2x+3-x\right)=0\)
\(\left(x-1\right)\left(x+3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
h) \(x^2-4x+8-2x+1=x^2-6x+9=0\)
\(\left(x-3\right)^2=0\Rightarrow x=3\)
\(A=x^2-8x+13=\left(x^2-8x+16\right)-3\ge-3\)Vậy \(Min_A=-3\) khi \(x+4=0\Leftrightarrow x=-4\)
\(B=2x^2+10x+5=2\left(x^2+5x+\dfrac{25}{4}\right)-\dfrac{5}{4}=2\left(x+\dfrac{5}{2}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)Vậy \(Min_B=-\dfrac{5}{4}\) khi \(x+\dfrac{5}{2}=0\Rightarrow=\dfrac{-5}{2}\)
\(C=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\le4\)Vậy \(Max_C=4\) khi \(2-x=0\Rightarrow x=2\)
Bài 1:
a, \(A=x^2-8x+13\)
\(A=x^2-4x-4x+16-3\)
\(A=\left(x-4\right)^2-3\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2-3\ge-3\)
Hay \(A\ge-3\) với mọi giá trị của \(x\in R\).
Để \(A=-3\) thì \(\left(x-4\right)^2-3=-3\Rightarrow x=4\)
Vậy......
Câu b tương tự
c, \(4x-x^2\)
\(C=-\left(x^2-4x\right)=-\left(x^2-2x-2x+4-4\right)\)
\(=-\left[\left(x-2\right)^2-4\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-4\ge-4\)
\(\Rightarrow-\left[\left(x-2\right)^2-4\right]\le4\)
Hay \(A\le4\) với mọi giá trị của \(x\in R\).
Để \(A=4\) thì \(-\left[\left(x-2\right)^2-4\right]=4\Rightarrow x=2\)
Vậy......
Chúc bạn học tốt!!!
Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)
Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm
a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)
Vậy MIN A = 1 khi x = 4
b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)
Vậy MIN T = 3 khi x = 2
c) \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\)
Vậy MIN H = -4 khi x = -1
d) \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)
Vậy MIN E = 8 khi x = y = 2
e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
Vậy MIN K = 1 khi x = 1/2; y = 1
f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
Vậy MIN M = 5/6 khi x = -1/3
a) \(A=\left(x^2-2.2x+4\right)-3\)
\(A=\left(x-2\right)^2-3\ge-3\Leftrightarrow x=2\)
Vậy minA = -3 khi x = 2
b) \(B=4x^2+4x+11\)
\(B=\left(\left(2x\right)^2+2x.1+1\right)+10\)
\(B=\left(2x+1\right)^2+10\ge10\Leftrightarrow x=-\frac{1}{2}\)
Vậy min B = 10 khi x = -1/2
c) \(C=\left(x11\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+3\right)\left(x+2\right)\)
\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(C=\left(x^2+5x\right)^2-36\ge-36\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)
Vậy MinC= -36 khi x =0 và x = -5
d) \(D=2x^2+y^2-2xy+2x-4y+9\)
\(D=y^2-2y\left(x+2\right)+\left(x+2\right)^2-x^2-4x-4+2x^2+2x+9\)
\(D=\left(y^2-y-x\right)^2+x^2-2x+5\)
\(D=\left(y^2-x-2\right)+\left(x-1\right)^2+4\ge4\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Vậy min D = 4 khi x = 1 và y = 3