K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{x-2}{x-6}< 0\)

TH1 : \(\hept{\begin{cases}x-2< 0\\x-6>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>6\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x-2>0\\x-6< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< 6\end{cases}}}\)

9 tháng 3 2019

câu a là x-y =-2 nha mk viết nhầm

16 tháng 7 2018

Bài 1:

a)   \(x^2+5x=x\left(x+5\right)< 0\)  (1)

Nhận thấy:   \(x< x+5\)

nên từ (1)   \(\Rightarrow\)  \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)

Vậy.....

b)   \(3\left(2x+3\right)\left(3x-5\right)< 0\)

TH1:   \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\)  \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)

TH2:  \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\)  vô lí

Vậy   \(-\frac{3}{2}< x< \frac{5}{3}\)

16 tháng 7 2018

Bài 2:

a)  \(2y^2-4y=2y\left(y-2\right)>0\)

TH1:   \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)

TH2:  \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)

Vậy  \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)

b)  \(5\left(3y+1\right)\left(4y-3\right)>0\)

TH1:  \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)

TH2:  \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)

Vậy   \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)

11 tháng 8 2016

\(A=x^2+4x< 0\)

\(=>x^2< -4x\)

\(=>x< -4\)

\(\left(x-3\right)\left(x+7\right)< 0\)

\(=>x-3< 0< x+7\)hoặc \(x+7< 0< x-3\)

\(=>-7< x< 3\)

\(x^2+4x< 0\)

\(\Rightarrow x\left(x+4\right)< 0\)

Th1 : \(\hept{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -4\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x< 0\\x+4>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-4\end{cases}}}\)

Những câu còn lại tương tự thôi

28 tháng 6 2015

6) a) Vì tích của 3 số âm là số âm nên trong đó chắc chắn chứa ít nhất 1 số âm

Bỏ số âm đó ra ngoài. Còn lại 99 số . Chia 99 số thành 33 nhóm. Mỗi nhóm gồn 3 số 

=> kết quả mỗi nhóm là số âm

=> Tích của 99 số là tích của 33 số âm => kết quả là số âm

Nhân kết quả đó với số âm đã bỏ ra ngoài lúc đầu => ta được Tích của 100 số là số dương

28 tháng 6 2015

Bạn nên đăng từng bài lên thôi.

12 tháng 7 2018

\(4)D=x^2+x+1\)

\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.

Các câu khác lm tương tự nhé.

Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy

hok tốt~

3 tháng 8 2020

\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )

\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)

\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )

\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )

\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)

\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )

\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)

\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )

\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)

\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )

16 tháng 9 2020

\(x^2-\frac{1}{5}x< 0\) 

\(x\left(x-\frac{1}{5}\right)< 0\) 

TH 1 : 

\(\hept{\begin{cases}x>0\\x-\frac{1}{5}< 0\end{cases}}\) 

\(\hept{\begin{cases}x>0\\x< \frac{1}{5}\end{cases}}\)  \(\Rightarrow0< x< \frac{1}{5}\) 

TH 2 : 

\(\hept{\begin{cases}x< 0\\x-\frac{1}{5}>0\end{cases}}\) 

\(\hept{\begin{cases}x< 0\\x>\frac{1}{5}\end{cases}}\) \(\Rightarrow x=\varnothing\)

Vậy \(0< x< \frac{1}{5}\) là nghiệm của bất phương trình trên 

16 tháng 9 2020

                                                                Bài giải

\(x^2-\frac{1}{5}\cdot x=x\left(x-\frac{1}{5}\right)< 0\)khi \(x\) và \(x-\frac{1}{5}\) đối nhau. Mà \(x>x-\frac{1}{5}\) nên :

\(\hept{\begin{cases}x>0\\x-\frac{1}{5}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>0\\x< \frac{1}{5}\end{cases}}\Rightarrow\text{ }0< x< \frac{1}{5}\)