Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:1-67/77=10/77
1-73/83=10/83
do 10/7>10/83
=>67/77>13/83
c, 64/85 và 73/81
Ta có: 64/85 <64/81 (1)
73/81> 64/81 (2)
Từ 1 và 2 suy ra 64/85<73/81
d,67/77 và 73/83
Ta có: 1-67/77=10/77 (1)
1-73/83=10/83 (2)
Từ 1 và 2 suy ra 10/77>10/83 suy ra 66/77<77/83
#)Giải :
Câu a, bạn tự làm nhé !
b, Xét mẫu số và tử số của hai phân số, ta thấy :
\(1717>1313\)và \(8585>5151\)
\(\Rightarrow\frac{1717}{8585}< \frac{1313}{5151}\)
c, Do 20092010- 2 < 20092011 - 2 => B < 1
Theo đề bài, ta có :
\(B=\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(1+2009^{2009}\right)}{2009\left(1+2009^{2010}\right)}=\frac{2009^{2009}+1}{2009^{2010+2}}=A\Rightarrow B< A\)
#~Will~be~Pens~#
a)ta có:1-65/77=12/77;1-73/83=10/83
Xét\(\frac{12}{77}>\frac{10}{77}>\frac{10}{83}\)
=>\(\frac{12}{77}>\frac{10}{83}\Leftrightarrow\frac{65}{77}< \frac{73}{83}\)
b)ta có:\(\frac{1717}{8585}< \frac{1}{4}< \frac{1313}{5151}\)
phan c ban ? lam đúng rồi
a,
Có: n/n+1 = n+1-1/n+1 = 1-(1/n+1)
n+2/n+3 = n+3-1/n+3 = 1-(1/n+3)
Vì 1/n+1 > 1/n+3
=> 1-(1/n+1) < 1-(1/n+3) hay n/n+1 < n+2/n+3
b,
giả sử n/n+3 < n-1/n+4
<=> n(n+4) < (n+3)(n-1)
<=> n^2 + 4n < n^2 + 2n - 3
<=> 2n < -3 (sai)
vậy n/n+3 > n-1/n+4
c) \(\frac{n}{2n+1}\)= \(\frac{3n}{6n+3}\)< \(\frac{3n+1}{6n+3}\)
b ) \(\frac{2013.2014-1}{2013.2014}=\frac{2013.2014}{2013.2014}-\frac{1}{2013.2014}=1-\frac{1}{2013.2014}\)
\(\frac{2014.2015-1}{2014.2015}=\frac{2014.2015}{2014.2015}-\frac{1}{2014.2015}=1-\frac{1}{2014.2015}\)
Vì \(2013.2014< 2014.2015\) nên \(\frac{1}{2013.2014}>\frac{1}{2014.2015}\)
Do đó \(1-\frac{1}{2013.2014}< 1-\frac{1}{2014.2015}\)
=> \(\frac{2013.2014-1}{2013.2014}< \frac{2014.2015-1}{2014.2015}\)
a) 1-\(\frac{67}{77}\)= \(\frac{10}{77}\);1-\(\frac{73}{83}\)= \(\frac{10}{83}\)Vậy \(\frac{10}{77}\)>\(\frac{10}{83}\)Nên \(\frac{67}{77}\)>\(\frac{73}{83}\)
Các câu khác cũng vậy mk cũng ko chắc câu đầu đâu
a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)
=> \(\frac{a+n}{b+n}>\frac{a}{b}\)
Với b>a thì chứng minh tương tự ta được \(\frac{a+n}{b+n}< \frac{a}{b}\)
Với a=b thì chứng minh tương tự ta được \(\frac{a+n}{b+n}=\frac{a}{b}\)
cho \(A=\frac{10^{11}-1}{10^{12}-1}\) và \(B=\frac{10^{10}+1}{10^{11}+1}\)
giải
Ta có
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Rightarrow10.A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow10.B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
VÌ 10.B > 1 và 10.A < 1
=> 10.B > 10.A
=> B > A
vậy A < B
a. 67/77 = 1 - 10/77; 73/83=1 - 10/83
Vì 10/77>10/83 nên 1 - 10/77 < 1-10/83
Vậy 67/77<73/83
c. Ta có: n/n+3 < n+1/n+3 <n+1/n+2
Vậy n/n+3 < n+1/n+2