Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) gọi \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
gọi \(B=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(\Rightarrow A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\)
b) Ta thấy \(\frac{1}{37}< \frac{1}{35}< \frac{1}{31}< \frac{1}{30}\), \(\frac{1}{61}< \frac{1}{53}< \frac{1}{47}< \frac{1}{45}\)
Do đó : \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{53}+\frac{1}{61}< \frac{1}{3}+\frac{1}{30}.3+\frac{1}{45}.3=\frac{1}{2}\)
c) \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{2500}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{2500}\right)\)
\(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)
Ta thấy vế trong ngoặc nhỏ hơn 1
\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>48\)
Bài 1 :
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
................
\(\frac{1}{2019^2}< \frac{1}{2018.2019}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2018.2019}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Rightarrow B< 1-\frac{1}{2019}< 1\)
\(\Rightarrow B< 1\)
#)Giải :
Bài 3 :
Gọi số cần tìm là x
Theo đầu bài, ta có :
x : 11 dư 6 => x - 6 chia hết cho 11 => n - 6 + 33 = x + 27 chia hết cho 11
x : 4 dư 1 => x - 1 chia hết cho 4 => n - 1 + 28 = n + 27 chia hết cho 4
x : 19 dư 11 => x - 11 chia hết cho 19 => x - 11 + 38 = x + 27 chia hết cho 19
Vì x + 27 chia hết cho 11,4 và 19 => x + 27 = BCNN( 11,4,19 ) = 836
=> x = 836 - 27 = 809
Vậy số cần tìm là 809
a,
Có: n/n+1 = n+1-1/n+1 = 1-(1/n+1)
n+2/n+3 = n+3-1/n+3 = 1-(1/n+3)
Vì 1/n+1 > 1/n+3
=> 1-(1/n+1) < 1-(1/n+3) hay n/n+1 < n+2/n+3
b,
giả sử n/n+3 < n-1/n+4
<=> n(n+4) < (n+3)(n-1)
<=> n^2 + 4n < n^2 + 2n - 3
<=> 2n < -3 (sai)
vậy n/n+3 > n-1/n+4
c) \(\frac{n}{2n+1}\)= \(\frac{3n}{6n+3}\)< \(\frac{3n+1}{6n+3}\)