Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi xy=k^2 với k là hằng số.
Ta có: [(x+y)/2]^2 >=xy <=>(x+y)^2 >= 4xy <=> (x+y) >= 2k =>min(x+y)=2k<=>x=y=k.
a)Xét hai số dương tích bằng a( với a là hằng số):
ta có (x+y)^2 >= 4xy=4a <=> x=y
Vì x,y >0 nên x+y nhỏ nhất <=> x=y.
1. Gọi số bé và số lớn lần lượt là a và a + 1 \(\left(a\in Z\right)\)
Ta có: \(2a+3\left(a+1\right)=-87\)
\(\Leftrightarrow5a+3=-87\Leftrightarrow a=-18\Rightarrow a+1=-17\)
Vậy số lớn là -17 và số bé là -18
1) Gọi hai số đỏ là x+n và x-n [tổng luôn bằng 2x].
Ta có: \(\left(x+n\right)\left(x-n\right)=x^2-n^2\le x^2\)
Dấu "=" xảy ra \(\Leftrightarrow n^2=0\) , nghĩa là 2 số bằng nhau (điều phải chứng minh).
2) Gọi hai số đó là x và y [tích là xy]
Ta có: \(\left(x+y\right)^2\ge4xy\)
Dấu "=" xảy ra \(\Leftrightarrow x=y\)
Vì x,y > 0 nên x + y nhỏ nhất \(\Leftrightarrow\left(x+y\right)^2\) nhỏ nhất \(\Leftrightarrow x=y\) (điều phải chứng minh)