K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

1.

S = 3 + 32 + 33 + 34 + ... + 3100

Ta thấy 3 \(⋮\)3 ; 32 \(⋮\)3 ; ... ; 3100 \(⋮\)3

\(\Rightarrow\)3 + 32 + 33 + 34 + ... + 3100 \(⋮\)3

\(\Rightarrow\)\(⋮\)3

S = 3 + 32 + 33 + 34 + ... + 3100

S = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )

S = 3 . ( 1 + 3 ) + 33 . ( 1 + 3 ) + ... + 399 . ( 1 + 3 )

S = 3 . 4 + 33 . 4 + ... + 399 . 4

S = 4 . ( 3 + 33 + ... + 399 ) \(⋮\)2 ( vì 4 \(⋮\)2 )

2.

gọi 3 số tự nhiên liên tiếp là a,a+1,a+ 2 ( a \(\in\)N )

Ta có :

a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3 . ( a + 1 ) \(⋮\)

Vậy tổng 3 số tự nhiên liên tiếp bất kì luôn chia hết cho 3

2 tháng 8 2017

1/

\(S=3\left(1+3+3^2+...+3^{99}\right)\)chia hết cho 3

\(S=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(S=4\left(3+3^5+...+3^{99}\right)\)chia hết cho 2

2/ 3 số TN liên tiếp là n; n+1; n+2

Tổng 3 số là

n+n+1+n+2=3n+3=3(n+1) chia hết cho 3

27 tháng 7 2017

2.

gọi 3 số tự nhiên liên tiếp là a,a+1,a+2 ( a \(\in\)N )

Ta có :

a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3 . ( a + 1 ) \(⋮\)3

Vậy tổng ...

6 tháng 7 2017

Bài 1:x là số chẵn(x\(\in\)N)

6 tháng 7 2017

bai 1 :x la so chan (chia het cho 2)

         x la so le (khong chia het cho 2

bai 2:tong cua 5 so tu nhien lien tiep chia het cho 5 vi tong 5 so tu nhien lien tiep la so co tan cung 0,5

bai 3:b,xy+yx=(x nhan 10)+y+(y nhan 10)+x=10x+y+10y+x=11x+11y.11x va 11y chia het cho 11. vay xy+yx chia het cho 11

8 tháng 1 2018

a ) Gọi 11 số tự nhiên liên tiếp 1 bất kì là a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ; a + 5 ; a + 6 ; a + 7 ; a + 8 ; a + 9 ; a + 10

Ta thấy : ( a + 10 ) - a = 10 .

Mà 10 lại chia hết cho 10

Suy ra trong 11 số tự nhiên liên tiếp luôn có 2 số có hiệu là 10 ( ko phải ít nhất nha bạn ) 

b ) Gọi 100 số tự nhiên liên tiếp bất kì là 50a ; 50a + 1 ; ... ; 50a + 99

Ta thấy ( 50a + 49 ) + ( 50a + 51 ) = 100a + 100

             ( 50a + 48 ) + ( 50a + 52 ) = 100a + 100

             ( 50a + 1 ) + ( 50a + 49 ) = 100a + 50

Mà 50 và 100  thì lại chia hết cho 50

Suy ra trong 100 số tự nhiên liên tiếp luôn có ít nhất 2 số có tổng chia hết cho 50

25 tháng 6 2017

a,

Gọi 3 số tự nhiên lt đó là a, a+1, a+2, ta có tổng chúng là:

a + a + 1 + a + 2 = 3a + 3 

Mà 3a \(⋮3;3⋮3\)

=> 3a + 3 \(⋮3\)

Vậy tổng ba số tự nhiên liên tiếp luôn chia hết cho 3

b, 

Gọi 4 số tn lt đó lần lượt là a, a+1, a+2, a+3, ta có tổng chúng là:ư

a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4a + 4 + 2 

Mà \(4a⋮4;4⋮4\), 2 chia 4 dư 2 

Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4 mà chia 4 dư 2

c, 

Gọi 2 số tự nhiên liên tiếp đó là a, a+11, ta có tích chúng là:

a[a + 1] 

*Nếu a chẵn thì đương nhiên a[a + 1] chia hết cho 2

* nếu a lẻ thì a + 1 sẽ chia hết cho 2 nên a[a + 1] chia hết cho 2

Vậy tích 2 số tự nhiên liên tiếp chia hết cho 2

d, 

Gọi 3 số tự nhiên liên tiếp là a,a+1, a+2, ta có tích chúng là:

a[a+1][a+2]

* cm a[a+1][a+2] chia hết cho 2

** nếu a lẻ thì a + 1 chia hết cho 2 => a[a+1][a+2] chia hết cho 2

** nếu a chẵn thì a và a+2 chia hết cho 2 => a[a+1][a+2] chia hết cho 2

Vậy a[a+1][a+2] chia hết cho 2

* cm a[a+1][a+2] chia hết cho 3

Ta có mọi số tự nhiên đều có dạng 3k, 3k+1 hoặc 3k + 2

** nếu a = 3k => a chia hết cho 3 => a[a+1][a+2] chia hết cho 3

** nếu a = 3k + 1 => a + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3

** nếu a = 3k + 2 => a + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3

Vậy a[a+1][a+2] chia hết cho 3

Kết luận: tích ba số tự nhiên liên tiếp chia hết cho 2 và 3

e, 

2 + 22 + 23 + 24 + ... + 260 

= 2[1 + 2 + 22 + 23 + 24 + ... + 260\(⋮2\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23] + 24[2 + 22 + 23] + 28[2 + 22 + 23] + ... + 256[2 + 22 + 23]

= 14 + 24.14 +... + 256.14

= 7 . 2[1 + 24 + ... + 256\(⋮7\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24

= 30 + 25.30 + ... + 255.30

= 5.6 + 25.5.6 + ... + 255.5.6

= 5[1.6 + 25.6 + ... + 255.6] \(⋮5\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24

= 30 + 25.30 + ... + 255.30

= 15.2 + 25.15.2 + ... + 255.15.2

= 15[1.2 + 25.2 + ... + 255.2]\(⋮15\)

Vậy 2 + 22 + 23 + 24 + ... + 260 chia hết cho 2,5,7,15

g, 

102005 - 1 = 1000....000 - 1 [có 2005 chữ số 0]

               = 999.....9999 [2004 chữ số 9] 

Mà 999.....9999 \(⋮9\)[vì 9.2004 chia hết cho 9]

=> 102005 - 1 chia hết cho 9

Mà một số chia hết cho 9 sẽ chia hết cho 3 [VD: 9k = 3.3.k chia hết cho 3]

=> 102005 - 1 chia hết cho 3

Vậy 102005 - 1 chia hết cho 3 và 9

h, 

Ta có:

102005 + 2 = 102005 - 1 + 3

Mà 102005 - 1 chia hết cho 3 [chứng minh trên]

Lại có: 3 chia hết cho 3

=> 102005 + 2 chia hết cho 3

Mà 102005 + 2 = 9999....9 + 3 = 1000000000.....2 [2004 chữ số 0] có tổng các chữ số là:

1 + 0 + 0 + ... + 0 + 2 = 3 không chia hết cho 9

Vậy 102005 + 2 không chia hết cho 9 [mình nghĩ bạn ghi đề nhầm]

13 tháng 10 2018

Gọi 2 số tự nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

  • Nếu:  a = 2k thì chia hết cho 2  
  • Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm

31 tháng 8 2019

1. Gọi số tự nhiên bất kì là a

Ta có: a + (a+1) + (a+2) = 3a + 3 chia hết cho 3

Vậy…

31 tháng 8 2019

2. Ta có 2^15 = 2.2…2.2 (15 số 2) chia hết cho 2

    Lại có 424 = 2.212 chia hết cho 2

Vậy…

13 tháng 12 2016

b10:

1.\(A=\left(\frac{999-1}{2}+1\right).\frac{999+1}{2}=250000\)

2. \(B=\left(1+3+...+2017\right)-\left(2+4+...+2016\right)\)

\(=2017.\frac{2017+1}{2}-\left(\frac{2016-2}{2}+1\right).\frac{2016+2}{2}\)

đến đây bạn bấm máy đi nhé!

3. \(C=3+3^2+3^3+...+3^{99}\left(1\right)\)

Nhân hai vế của (1) vs số 3 ta được:

\(3C=3^2+3^3+...+3^{100}\left(2\right)\)

Lấy (2)-(1) theo vế ta được: \(3C-C=3^{100}-3\)

=> C=\(\frac{3^{100}-3}{2}\)

4. Làm giống hết câu 3 luôn nhé, chỉ là nhân với 4 thôi.

28 tháng 10 2016

MÌNH TRẢ LỜI ĐƯỢC NHƯNG KHI MÌNH TRẢ LỜI XONG NHỚ K CHO MÌNH 3 NHE

25 tháng 10 2016

bhhhhhhhhhhhh

30 tháng 4 2018

Câu a) Dễ mà

Câu b) Hiệu hai số nguyên tố k thể là 2013. Vì

Giả sử có hai số nguyên tố \(a-b=2013\)

Suy ra: a,b là số lẻ (Không đc vì a-b phải là số chẵn)

Hoặc: \(\orbr{\begin{cases}a=2\\b=2\end{cases}\Rightarrow\orbr{\begin{cases}b=2015\\a=2015\end{cases}}}\)(không thỏa vì 2015 không phải là số nguyên tố)

Suy ra phản giả thiết

Vậy không tồn tại hai số nguyên tố sao cho tổng = 2013

30 tháng 4 2018

a) Ta xét:S=3+3^(2+1)+3^(2+3)+...+3^(2+1009)+3^(2+1011)+3^(2+1013)

S=3+9(3+3^3+...+3^1009+3^1011+3^1013) ko chia hết cho 9

s ko chia het 70 minh ko bit

b) gọi 2 số nguyên tố là a,b  Giả sử:a-b=2013

vì 2013 là số lẻ => 1 trong 2 số a,b là chẵn mà a,b nguyên  tố => 1 trong 2 số a,b =2

Nếu a=2=>2-b=2013=>b=-2011ko là số nguyên tố

Nếu b=2 => a-2=2013 => a= 2015 ko số nguyên tô

Do vậy giả sử sai=> hiệu 2 số nguyên tố ko bằng 2013