K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)

+Nếu a chia hết cho 5 , bài toán giải xong

+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5

+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5

+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5

+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có  a+1=5e+4+1=(5e+5) chia hết cho 5

Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết  cho 5

b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N 

do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5

=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5

28 tháng 12 2016

bài này mình chụi

20 tháng 9 2019

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534

V
16 tháng 12 2018

số a là chẵn

Bài 1:

Ta có: a chia 36 dư 12

⇔a=36k+12

=4(9k+3)⋮4

Ta có: a=36k+12

=36k+9+3

Ta có: 36k+9=9(k+4)⋮9

3\(⋮̸\)9

Do đó: 36k+9+3\(⋮̸\)9(dấu hiệu chia hết của một tổng)

Bài 2:

a) Gọi ba số tự nhiên liên tiếp là a; a+1; a+2

Tổng của ba số tự nhiên liên tiếp là:

a+(a+1)+(a+2)

=a+a+1+a+2

=3a+3

=3(a+1)⋮3(đpcm)

b) Gọi bốn số tự nhiên liên tiếp là a; a+1; a+2; a+3

Tổng của bốn số tự nhiên liên tiếp là:

a+(a+1)+(a+2)+(a+3)

=a+a+1+a+2+a+3

=4a+6

=4a+4+2

=4(a+1)+2

Ta có: 4(a+1)⋮4

2\(⋮̸\)4

Do đó: 4(a+1)+2\(⋮̸\)4(dấu hiệu chia hết của một tổng)

hay Tổng của bốn số tự nhiên liên tiếp không chia hết cho 4(đpcm)

Bài 3:

Ta có: \(A=4+2^2+2^3+2^4+...+2^{20}\)

\(\Rightarrow2\cdot A=8+2^3+2^4+2^5+...+2^{21}\)

Do đó: \(2A-A=\left(8+2^3+2^4+2^5+...+2^{21}\right)-\left(4+2^2+2^3+2^4+...+2^{20}\right)\)

\(=8+2^3+2^4+2^5+...+2^{21}-4-2^2-2^3-2^4-...-2^{20}\)

\(\Rightarrow A=8+2^{21}-\left(4+2^2\right)\)

\(=8+2^{21}-4-2^2\)

\(=2^{21}+8-4-4=2^{21}\)

Vậy: A là một lũy thừa của 2(đpcm)

27 tháng 12 2020

Bài 1:

Khi a : 36 dư 12 => a = 36k +12

                           => a = 4(9k + 3) chia hết cho 4

Ta thấy 4 không chia hết cho 9

9k chia hết 9 =>(9k + 3) không chia hết cho 9 => a không chia hết cho 9

Bài 2:

a) Gọi 3 số tự nhiên liên tiếp là a;a+1;+2

 ta có:a+(a+1)+(a+2)=3a+3=3.(a+1) chia hết cho 3

b) Làm tương tự như câu a

Bài 3:

A = 4 + 22 + 23 + 24 + ..... + 220

2A = 8 + 23 + 24 + .... + 220 + 221

Suy ra : 2A - A = 221 + 8 - ( 4 + 22 )

Vậy A = 221

 

 

19 tháng 11 2018

1/a/ \(A=2+2^2+2^3+....+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^9+2^{10}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^9\left(1+2\right)\)

\(=2.3+2^3.3+....+2^9.3\)

\(=3\left(2+2^3+.....+2^9\right)⋮3\)

\(\Leftrightarrow A⋮3\left(đpcm\right)\)

b/ \(A=2+2^2+2^3+....+2^{10}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31\)

\(=31\left(2+2^6\right)⋮31\)

\(\Leftrightarrow A⋮31\left(đpcm\right)\)

2/ Với mọi n là số tự nhiên thì \(n\) có hai dạng :

\(\left[{}\begin{matrix}n=2k\\n=2k+1\end{matrix}\right.\)

+) \(n=2k\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+4\right)\left(2k+7\right)\)

\(2k+4⋮2\)

\(\Leftrightarrow\left(2k+4\right)\left(2k+7\right)⋮2\)

\(\Leftrightarrow B\) là số chẵn

+) \(n=2k+1\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+1+4\right)\left(2k+1+7\right)=\left(2k+5\right)\left(2k+8\right)\)

\(2k+8⋮2\)

\(\Leftrightarrow\left(2k+5\right)\left(2k+8\right)⋮2\)

\(\Leftrightarrow B\) là số chẵn

Vậy...

NV
19 tháng 11 2018

1/

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(A=2.3+2^3.3+2^5.5+...+2^9.3=3.\left(2+2^3+...+2^9\right)\)

Do \(3⋮3\Rightarrow A⋮3\)

\(A=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)

\(A=2.31+2^6.31=31\left(2+2^6\right)\)

Do \(31⋮31\Rightarrow A⋮31\)

2/ \(B=\left(n+4\right)\left(n+7\right)\)

Nếu n chẵn, đặt \(n=2k\Rightarrow B=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)\)

Do 2 chẵn nên B chẵn

Nếu n lẻ, đặt \(n=2k+1\Rightarrow B=\left(2k+5\right)\left(2k+8\right)=2\left(2k+5\right)\left(k+4\right)\)

2 chẵn nên B chẵn

Vậy B luôn chẵn với mọi n

3/ Đề là B(112) hay B(121) bạn?

20 tháng 10 2021

Bạn hc trường THCS Trọng Điểm đúng ko. Nhìn đề thấy quen quen

23 tháng 10 2021

Ko, phú diễn

15 tháng 10 2015

a,

Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2

Khi chia một số cho 3 sẽ xảy ra 1 trong ba trường hợp sau:

a=3k hoạc a=3k+1 hoặc a=3k+2

* Nếu a=3k thì a sẽ chia hết cho 2.                                                                                   (1)

* Nếu a=3k+2 thì a+1=3k+2

                          a    =3k+3

Vì 3k chia hết cho 3

     3 chia hết cho 3

=> 3k+3 chia hết cho 3 hay a+1 chia hết cho 3                                                                                          (2)

* Nếu a=3k+1 thì a+2=3k+1

                          a   =3k+3

Vì 3k chia hết cho 3

     3 chia hết cho 3

=>  3k+3 chia hết cho 3 hay a+2 chia hết cho 3                                                                                         (3)

Từ (1),(2) và (3) =>trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

13 tháng 12 2018

a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)

    S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)

    S=129+2*3+2^3*(1+2)+2^5*(1+2)

    S=3*43+2*3+2^3*3+2^5*3

    S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3

     

26 tháng 12 2018

c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004

    S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]

    S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )

    S = 2*501

    S = 1002