Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gom: (1+5+5^2)+(5^3+5^4+5^5)+....(5^402+5^403+5^404)
=1(1+5+5^2)+5^3(1+5+5^2)+...+5^402(1+5+5^2)
=1.31+5^3.31+...+5^402.31
Vay 1+5+5^2+...+5^403+5^404chia het cho 31
Ta có:\(1+5+5^2+\cdot\cdot\cdot+5^{404}\)
= \(\left(1+5+5^2\right)+\cdot\cdot\cdot+\left(5^{402}+5^{403}+5^{404}\right)\)
= \(\left(1+5+25\right)+\cdot\cdot\cdot+\left(5^{402}\cdot1+5^{402}\cdot5+5^{402}\cdot25\right)\)
= \(31+\cdot\cdot\cdot+\left(1+5+25\right)\cdot5^{402}\)
= \(31\cdot1+...+31\cdot5^{402}\)
= \(31\cdot\left(1+...+5^{402}\right)⋮31\)
Vậy tổng trên chia hết cho 31
=> B=(1+5+52)+(53+54+55)+...........+(5402+5403+5404)
=> B= 1.(1+5+52)+53.(1+5+52)+.........+5402.(1+5+52)
=> B=1.31+53.31+...........+5402.31
=> B=31.(1+53+........+5402)
Vì 31 chia hết cho 31 => 31.(1+53+............+5402) chia hết cho 31
=> B chia hết cho 31 ĐPCM
1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2) [vì có 99 số hạng chia hết cho 3]
=31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31
B=1+5+52+53+...+596+597+598
=(1+5+52)+(53+54+55)+...+(596+597+598)
=31+53.(1+5+52)+...+596.(1+5+52)
=31+53.31+...+596.31
=31.(1+53+...+596)
=>B chia hết cho 31
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
\(1+5+5^2+...+5^{404}\)
\(=5^3\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{404}\left(1+5+5^2\right)\)
\(=\left(1+5+5^2\right)\left(5^3+5^4+...+5^{403}+5^{404}\right)\)
\(=31.\left(5^3+5^4+...+5^{403}+5^{404}\right)\)
Vậy tổng trên chia hết cho 31
1 + 5 + 52 + .... + 5404
= ( 1 + 5 ) + ( 52 + 53 ) + ... + ( 5403 + 5404 )
= 6 + 52 . ( 1 + 5 ) + ... + 5403 . ( 1 + 5 )
=6 + 52 . 6 + ... + 5403 . 6
= 6 . ( 1 + 52 + ... + 5403 )
= 3 . 2 . ( 1 + 52 + .... + 5403 ) chia hét cho 3
1 + 5 + 5^2 + ...+ 5^404
= ( 1 + 5 + 5^2 + 5^3) + ( 5^4 + 5^5+5^6+5^7) + ...+ ( 5^401+ 5^402+5^403+5^404)
= 31+ 5^4.31+...+ 5^401.31
= 31(1+5^4 +...+5^404)
=> đpcm
Ta có:
\(1+5+5^2+...+5^{404}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{403}+5^{404}\right)\)
\(=6+5^2.\left(1+5\right)+...+5^{403}.\left(1+5\right)\)
\(=6+5^2.6+...+5^{403}.6\)
\(=6.\left(1+5^2+...+5^{403}\right)\)
\(=3.2.\left(1+5^2+...+5^{403}\right)\)chia hết cho 3
Đặt A = 1 + 5 + 5^2 + 5^3 + 5^4 +...+ 5^402 + 5^403 + 5^404
= (1 + 5 + 5^2) + (5^3 + 5^4 + 5^6) +...+ (5^402 + 5^403 + 5^404)
= (1 + 5 + 5^2) + 5^3(1 + 5 + 5^2) +...+ 5^402(1 + 5 + 5^2)
= 31 + 5^2.31 +...+ 5^402.31
= 31.(1 + 5^2 +... + 5^402) chia hết cho 31.
Vậy A chia hết cho 31 (ĐPCM)
bấm vào đây nhé chung to1 +5+52 +..............+5402+5403+5404 chia het cho 3