Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)<2003/2004\)
Ta có :=2/2.(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)
=1/2.(2/1.3+2/3.5+2/5.7+...+2/n.(n+2)
=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/n-1/n+2)
=1/2.(1-1/n+2)
=1/2.(n+2/n+2-1/n+2)
=1/2.(n+2-1/n+2)
=1/2.n+1/n+2
=n+1/(n+2).2
Vì: n+1/(n+2).2<2003/2004
Suy ra:n+1/(n+2).2=x/2004
Suy ra:(n+2).2=2004
n+2 =1002
n =1000
Vậy n bằng 1000
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{n\left(n+2\right)}=\frac{5}{36}\)
\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n\left(n+2\right)}\right)=\frac{5}{36}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{5}{18}\)
\(\frac{1}{3}-\frac{1}{n+2}=\frac{5}{18}\)
\(\frac{1}{n+2}=\frac{1}{18}\)
\(\Rightarrow n+2=18\Rightarrow n=16\)
\(\Rightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}=\frac{10}{36}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{5}{18}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{n+2}=\frac{5}{18}\)
\(\Rightarrow\frac{n+2-3}{3\left(n+2\right)}=\frac{5}{18}\)
\(\Rightarrow\frac{n-1}{3n+6}=\frac{5}{18}\)
\(\Rightarrow18\left(n-1\right)=5\left(3n+6\right)\)
\(\Rightarrow18n-18=15n+30\)
\(\Rightarrow3n=48\)
\(\Rightarrow n=48:3\)
=>n=16
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
A = 1 /1.2 + 1/ 2.3 + 1 /3.4 + . . . + 1/ 49.50 + 1/ 50.51
A = 2 − 1/ 1.2 + 3 − 2 /2.3 + 4 − 3 /3.4 + . . . + 50 − 49 /49.50 + 51 − 50/ 50.51
A = 1 − 1/ 2 + 1/ 2 − 1 /3 + 1 /3 − 1/ 4 + . . . + 1 /50 − 1 /51
A=1-1/51
A=50/51
2.
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{1}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+...+\frac{1}{2}.\left(\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{15}{93}:\frac{1}{2}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Rightarrow\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\Rightarrow\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow\)2x + 3 = 93
\(\Rightarrow\)2x = 93 - 3
\(\Rightarrow\)2x = 90
\(\Rightarrow\)x = 90 : 2 = 45
\(H=\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{33.37}\)
= \(\frac{3}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{33}-\frac{1}{37}\right)\)
= \(\frac{3}{4}\left(1-\frac{1}{37}\right)\)
= \(\frac{3}{4}.\frac{36}{37}=\frac{27}{37}\)
Bạn gõ lại đề đi :v
Đọc chả hiểu đề gì cả ... đề k có x
Mà phía dưới có cái đáp số x= ... là sao ??
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
Bài 1:
a) A=1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100
A=1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100
A=1-1/100
A=99/100
b) B=1/3.5+1/5.7+1/7.9+...+1/145.147
Ta nhân biểu thức trên với 2 ta được
B=2/3.5+2/5.7+2/7.9+...+2/145.147
B=2.(1/3.5+1/5.7+1/7.9+...+1/145.147)
B=2.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/145-1/147)
B=2.(1/3-1/147)
B=2.16/49
B=32/49
Bài 2:
Ta có: 4/11<x/20<5/11
=> 88/220<11x/220<100/220
=> 80<11x<100
=> 11x thuộc {88;99}
=> x thuộc {8;9}
Đây là bài toán tìm tổng dãy số có quy luật.
Để ý thấy rằng \(\frac{1}{n\left(n+2\right)}=\frac{1}{2}.\frac{2}{n\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)\)
Vậy thì \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{n\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{n+2}\right)=\frac{5}{36}\Rightarrow\frac{1}{3}-\frac{1}{n+2}=\frac{5}{18}\)
\(\Rightarrow\frac{1}{n+2}=\frac{1}{18}\Rightarrow n=16.\)
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{n\left(n+2\right)}=\frac{5}{36}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{5}{36}\)
\(\frac{1}{3}-\frac{1}{n+2}=\frac{5}{36}\)
\(\frac{12}{36}-\frac{1}{n+2}=\frac{5}{36}\)
\(\frac{1}{n+2}=\frac{7}{36}\)
\(\Rightarrow\frac{7}{7\left(n+2\right)}=\frac{7}{36}\)
\(7\left(n+2\right)=36\)
n + 2 = 36/7
n = 36/7 - 2
( Tự tính KQ nha )