K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

a,khi PT y=ax+b //với trục Oy =) y=0

ta có PT 0=ax+b

vì PtT đi qua điểm E(-5;4) =) x=-5

ta có PT 0=-5a+b

b tương tự

2.đường thẳng ax+b=y // y=1/2x

=)a=a'

b khác b'

=)y=1/2x+b , b khác 0

giao điểm đường thẳng y=.. và y=.. là(gọi tạm là PT1,PT2)

1/2x+1=5x+3

....

x=-4/9

y=1/2x-4/9 +1=7/9

vậy PT1 và PT2 giao tại I(-4/9,7/9)

vì đg thẳng y=1/2x+b đi qua I nên thay x=-4/9 y=7/9 ta có

7/9=1/2x-4/9+b

b=1

vậy PT là y=1/2x+1

22 tháng 10 2020

ko chắc đúng

9 tháng 3 2022

bạn xem lại lớp nhé 

 (d) // đt (delta) <=> \(\left\{{}\begin{matrix}a=5\\b\ne1\end{matrix}\right.\)

=> (d) : y = 5x + b 

(d) đi qua M(-1;2) <=> 2 = -5 + b <=> b = 7 (tm)

Vậy (d) : y = 5x + 7 

3 tháng 12 2021

Gọi các đồ thị có CT chung là \(ax+b\)

\(a,\Leftrightarrow\left\{{}\begin{matrix}-a+b=-5\\a=0;b\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-5\end{matrix}\right.\Leftrightarrow\left(d_1\right):y=-5\\ b,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\a=2;b\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\Leftrightarrow\left(d_2\right):y=2x+7\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow\left(d_3\right):y=-2x+3\\ d,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=0\end{matrix}\right.\Leftrightarrow\left(d_4\right):y=-5x\)

3 tháng 12 2021

câu c bạn giải kỹ hơn đc ko 

1: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a+b=-2\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=1-2a=1-2\cdot\left(-3\right)=7\end{matrix}\right.\)

2: Vì (d)//y=-3x+2 nên a=-3

Vậy: y=-3x+b

Thay x=3 và y=3 vào y=-3x+b, ta được:

b-9=3

hay b=12

23 tháng 2 2022

sao ngắn v bn @@

NV
7 tháng 5 2020

a/ d' nhận \(\left(4;3\right)\) là 1 vtpt

d song song d' nên d cũng nhận \(\left(4;3\right)\) là 1 vtpt

Phương trình d:

\(4\left(x-3\right)+3\left(y-1\right)=0\Leftrightarrow4x+3y-15=0\)

b/ Trục hoành có 1 vtpt là \(\left(0;1\right)\)

d song song trục hoành nên d cũng nhận (0;1) là 1 vtpt

Phương trình d: \(0\left(x+2\right)+1\left(y-4\right)=0\Leftrightarrow y-4=0\)

c/ Trục tung nhận (1;0) là 1 vtpt nên d cũng nhận (1;0) là 1 vtpt

Phương trình d: \(1\left(x+2\right)+0\left(y-4\right)=0\Leftrightarrow x+2=0\)

d/ d' nhận (3;-1) là 1 vtcp nên d nhận (3;-1) là 1 vtcp

\(\Rightarrow\) d nhận (1;3) là 1 vtpt

Phương trình d: \(1\left(x-1\right)+3\left(y-2\right)=0\Leftrightarrow x+3y-7=0\)

7 tháng 5 2020

giải giúp toán số vs

\n

a: d'//d

=>d': 3x-y+c=0

Thay x=3 và y=-2 vào (d'), ta được:

c+9+2=0

=>c=-11

b: x=6+21t và y=1-3t

=>(d2) đi qua A(6;1) và có VTCP là (21;-3)=(7;-1)

=>VTPT là (1;7)

M(4;-14)

Phương trình (d2) là:

1(x-6)+7(y-1)=0

=>x-6+7y-7=0

=>x+7y-13=0

=>(d3): x+7y+c=0

Thay x=4 và y=-14 vào (d3),ta được:

c+4-98=0

=>c=94

a: vtpt là (4;3)

Phương trình tổng quát là:

4(x-1)+3(y-2)=0

=>4x-4+3y-6=0

=>4x+3y-10=0

b: Phương trình Δ là:

2(x+2)+3(y-4)=0

=>2x+4+3y-12=0

=>2x+3y-8=0

c: Gọi (d): y=ax+b là phương trình cần tìm

Theo đề, ta có:

\(\left\{{}\begin{matrix}-2a+b=1\\3a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{5}\\b=\dfrac{7}{5}\end{matrix}\right.\)

d: Vì (d1)//(d) nên (d1): 3x-5y+c=0

Thay x=4 và y=-2 vào (d1), ta được:

c+3*4-5*(-2)=0

=>c=-22

f: (d): 2x-7y-1=0

=>Δ: 7x+2y+c=0

Thay x=3 và y=5 vào Δ, ta được:

c+21+10=0

=>c=-31

27 tháng 10 2020

\(y=ax+b\left(d\right)\)

1.

\(\left(d\right)\) đi qua \(C\left(4;-3\right)\Rightarrow4a+b=-3\)

\(\left(d\right)\) song song với \(y=-\frac{2}{3}x+1\Rightarrow\left\{{}\begin{matrix}a=-\frac{2}{3}\\b\ne1\end{matrix}\right.\)

Khi đó ta có \(\left\{{}\begin{matrix}4a+b=-3\\a=-\frac{2}{3}\\b\ne1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{2}{3}\\b=-\frac{1}{3}\end{matrix}\right.\Rightarrow y=-\frac{2}{3}x-\frac{1}{3}\left(d\right)\)

2.

Ta có \(\left\{{}\begin{matrix}a+b=2\\a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=2\end{matrix}\right.\Rightarrow y=2x\left(d\right)\)

3.

Ta có \(\left\{{}\begin{matrix}4a+b=2\\a.\left(-\frac{1}{2}\right)=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-6\\a=2\end{matrix}\right.\Rightarrow y=2x-6\left(d\right)\)