Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tính
a) Ta có: \(\frac{\sqrt{6+\sqrt{11}}-\sqrt{7-\sqrt{33}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{14-2\sqrt{33}}}{\sqrt{12}+2}\)
\(=\frac{\sqrt{11+2\cdot\sqrt{11}\cdot1+1}-\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{3}+3}}{2\sqrt{3}+2}\)
\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}}{2\sqrt{3}+2}\)
\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-\sqrt{3}\right|}{2\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{11}+1-\left(\sqrt{11}-\sqrt{3}\right)}{2\left(1+\sqrt{3}\right)}\)(Vì \(\left\{{}\begin{matrix}\sqrt{11}>1>0\\\sqrt{11}>\sqrt{3}\end{matrix}\right.\))
\(=\frac{\sqrt{11}+1-\sqrt{11}+\sqrt{3}}{2\left(1+\sqrt{3}\right)}\)
\(=\frac{1+\sqrt{3}}{2\left(1+\sqrt{3}\right)}=\frac{1}{2}\)
b) Ta có: \(\frac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
\(=\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(8-\sqrt{15}\right)}{\sqrt{5}+\sqrt{3}}\)
\(=\sqrt{15}+\frac{2}{4+\sqrt{15}}-\left(8-\sqrt{15}\right)\)
\(=\sqrt{15}+\frac{2}{4+\sqrt{15}}-8+\sqrt{15}\)
\(=2\sqrt{15}-8+\frac{2}{4+\sqrt{15}}\)
\(=\frac{2\sqrt{15}\left(4+\sqrt{15}\right)}{4+\sqrt{15}}-\frac{8\left(4+\sqrt{15}\right)}{4+\sqrt{15}}+\frac{2}{4+\sqrt{15}}\)
\(=\frac{8\sqrt{15}+30-32-8\sqrt{15}+2}{4+\sqrt{15}}\)
\(=\frac{0}{4+\sqrt{15}}=0\)
Bài 2: Rút gọn
Ta có: \(B=\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\left(\frac{1+\sqrt{a}}{a-1}\right)^2\)
\(=\left(\frac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}-\sqrt{a}\right)\cdot\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)^2\)
\(=\left(1-\sqrt{a}+a-\sqrt{a}\right)\cdot\left(\frac{1}{\sqrt{a}-1}\right)^2\)
\(=\left(a-2\sqrt{a}+1\right)\cdot\frac{1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2}=1\)
Bài 3:
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{9;4\right\}\end{matrix}\right.\)
b) Ta có: \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3-3\sqrt{x}}{x-5\sqrt{x}+6}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{3-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4-\left(x-2\sqrt{x}-3\right)+3-3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-3\sqrt{x}-1-x+2\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{1}{3-\sqrt{x}}\)
c) Để A<-1 thì A+1<0
\(\Leftrightarrow\frac{1}{3-\sqrt{x}}+1< 0\)
\(\Leftrightarrow\frac{-1}{\sqrt{x}-3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\frac{-1+\sqrt{x}-3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>4\\\sqrt{x}< 3\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 4\\\sqrt{x}>3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16\)
1.
= -(13 + 3 căn7 ) / 2 + -(7 + 3 căn7 ) / 2
= -7 + 3 căn7