K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2016

a,   A\(=\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{x-1}{\sqrt{x}}\)  ĐK  x>0   ;\(x\ne1;x\ne-1\)

    \(A=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}}{x-1}\)

\(A=\frac{4x\sqrt{x}}{x-1}.\frac{\sqrt{x}}{x-1}\)=\(\frac{4x^2}{\left(x-1\right)^2}\)

b,  Để  A =2  \(\Rightarrow\frac{4x^2}{\left(x-1\right)^2}=2\Rightarrow4x^2=2\left(x-1\right)^2\)

                     <=>  \(4x^2=2x^2-4x+2\)

                      <=> \(2x^2+4x-2=0\)

                       <=> \(x^2+2x-1=0\)

                       \(\Delta=1^2-1.\left(-1\right)\) =  2

                => \(\orbr{\begin{cases}x_1=-1-\sqrt{2}\left(loại\right)\\x_2=-1+\sqrt{2}\left(nhận\right)\end{cases}}\)

Vậy x=\(-1+\sqrt{2}\)thì  A =2  

c, Thay   x =\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)=2

  =>A  =   \(\frac{4.2^2}{\left(2-1\right)^2}=16\)

Vậy  A=16  thì  x=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP​1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)5. Cho biểu thức:...
Đọc tiếp

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP

1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)

2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)

3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)
4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)

5. Cho biểu thức: (2,5đ)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)với x >0, x khác 1 
Hãy tìm x để A có nghĩa rồi:
a/ Rút gọn A
b/ Tìm x biết A =-1 
6. Giai phương trình \(\sqrt{16x-32}-\sqrt{4x-8}+\sqrt{9x-18}=1\)(0,5đ)
7. Giai phương trình \(\sqrt{x^2+2x+6}=x+2\)(0,5đ)
8. Thực hiện phép tính: \(B=\sqrt{5}\left(1-\sqrt{5}\right)+\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}\)(0,5đ)
9. Rút gọn biểu thức E = \(\sqrt{\frac{b}{a}}+ab\sqrt{\frac{1}{ab}}-\frac{b}{a}.\sqrt{\frac{a}{b}}\)(0,5đ)
10. Giai phương trình sau: \(\sqrt{4x-12}-\sqrt{25x-75}-\sqrt{x-3}=4-\sqrt{16x-48}\)(0,5đ)
11. Cho biểu thức: \(F=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)với a >0, a khác 1
a/ Rút gọn F
b/ Tìm giá trị của a để trị F = -F
 

0
19 tháng 7 2017

câu 2

\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)

câu 1

\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

10 tháng 7 2020

Sửa đề :

a) \(A=\left(\frac{x-\sqrt{x}}{x-\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{x-\sqrt{x}-5}{x-\sqrt{x}-2}\right)\)

\(\Leftrightarrow A=\frac{x-\sqrt{x}+4\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{x-4-x+\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{x+3\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{x+3\sqrt{x}+4}{\sqrt{x}+1}\)

b) \(A=4\)

\(\Leftrightarrow\frac{x+3\sqrt{x}+4}{\sqrt{x}+1}=4\)

\(\Leftrightarrow x+3\sqrt{x}+4=4\sqrt{x}+4\)

\(\Leftrightarrow x-\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy \(A=4\Leftrightarrow x\in\left\{0;1\right\}\)

ĐK: \(x-9\ne0\Rightarrow x\ne9\)

\(\sqrt{x}\ge0\Rightarrow x\ge0\)

\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)

\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)

ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)

2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)

\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)

\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)

Bài 1: Tính

a) Ta có: \(\frac{\sqrt{6+\sqrt{11}}-\sqrt{7-\sqrt{33}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{14-2\sqrt{33}}}{\sqrt{12}+2}\)

\(=\frac{\sqrt{11+2\cdot\sqrt{11}\cdot1+1}-\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{3}+3}}{2\sqrt{3}+2}\)

\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}}{2\sqrt{3}+2}\)

\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-\sqrt{3}\right|}{2\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{11}+1-\left(\sqrt{11}-\sqrt{3}\right)}{2\left(1+\sqrt{3}\right)}\)(Vì \(\left\{{}\begin{matrix}\sqrt{11}>1>0\\\sqrt{11}>\sqrt{3}\end{matrix}\right.\))

\(=\frac{\sqrt{11}+1-\sqrt{11}+\sqrt{3}}{2\left(1+\sqrt{3}\right)}\)

\(=\frac{1+\sqrt{3}}{2\left(1+\sqrt{3}\right)}=\frac{1}{2}\)

b) Ta có: \(\frac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

\(=\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(8-\sqrt{15}\right)}{\sqrt{5}+\sqrt{3}}\)

\(=\sqrt{15}+\frac{2}{4+\sqrt{15}}-\left(8-\sqrt{15}\right)\)

\(=\sqrt{15}+\frac{2}{4+\sqrt{15}}-8+\sqrt{15}\)

\(=2\sqrt{15}-8+\frac{2}{4+\sqrt{15}}\)

\(=\frac{2\sqrt{15}\left(4+\sqrt{15}\right)}{4+\sqrt{15}}-\frac{8\left(4+\sqrt{15}\right)}{4+\sqrt{15}}+\frac{2}{4+\sqrt{15}}\)

\(=\frac{8\sqrt{15}+30-32-8\sqrt{15}+2}{4+\sqrt{15}}\)

\(=\frac{0}{4+\sqrt{15}}=0\)

Bài 2: Rút gọn

Ta có: \(B=\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\left(\frac{1+\sqrt{a}}{a-1}\right)^2\)

\(=\left(\frac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}-\sqrt{a}\right)\cdot\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)^2\)

\(=\left(1-\sqrt{a}+a-\sqrt{a}\right)\cdot\left(\frac{1}{\sqrt{a}-1}\right)^2\)

\(=\left(a-2\sqrt{a}+1\right)\cdot\frac{1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2}=1\)

Bài 3:

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{9;4\right\}\end{matrix}\right.\)

b) Ta có: \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3-3\sqrt{x}}{x-5\sqrt{x}+6}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{3-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-4-\left(x-2\sqrt{x}-3\right)+3-3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-3\sqrt{x}-1-x+2\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{1}{3-\sqrt{x}}\)

c) Để A<-1 thì A+1<0

\(\Leftrightarrow\frac{1}{3-\sqrt{x}}+1< 0\)

\(\Leftrightarrow\frac{-1}{\sqrt{x}-3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\frac{-1+\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\frac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>4\\\sqrt{x}< 3\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 4\\\sqrt{x}>3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16\)

23 tháng 9 2018

a) DK de P xác dinh : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) \(P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{1-x}+\frac{\left(\sqrt{x}-2\right)^2+3\sqrt{x}-x}{1-\sqrt{x}}\)

\(=\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{-\sqrt{x}+4}{1-\sqrt{x}}\)

\(=\frac{4}{1-\sqrt{x}}\)

c) de P > o thì \(1-\sqrt{x}>0\Rightarrow\sqrt{x}< 1\Rightarrow0< x< 1\)