Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Thay m=0, BPT có dạng \(x^2-x+6>=0\)
=> Tập nghiệm S thuộc R
b. Có 2 nghiệm trái dấu khi a.c < 0
m2-5m+6 <0 => Tập nghiệm S= (2;3)
a/ \(x^2-x+6\ge0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{23}{4}\ge0\) luôn đúng
Vậy nghiệm của BPT là \(x\in R\)
b/ Để phương trình có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\Leftrightarrow m^2-5m+6< 0\)
\(\Leftrightarrow\left(m-2\right)\left(m-3\right)< 0\Leftrightarrow2< m< 3\)
Câu 1:
Pt có 2 nghiệm là 2 số đối nhau
\(\Rightarrow x_1+x_2=0\Rightarrow\frac{2\left(m^2-1\right)}{m^2-2m+3}=0\Rightarrow m=\pm1\)
Thay lại hai giá trị vào pt để thử
Câu 2:
- Với \(m+1=0\Rightarrow m=-1\) BPT trở thành: \(1>0\) (đúng)
- Với \(m\ne-1\), để BPT đúng với mọi x thì:
\(\left\{{}\begin{matrix}\Delta'< 0\\m+1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)^2+m\left(m+1\right)>0\\m>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)\left(2m+1\right)>0\\m>-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>-\frac{1}{2}\end{matrix}\right.\\m>-1\end{matrix}\right.\) \(\Rightarrow m>-\frac{1}{2}\)
Vậy \(\left[{}\begin{matrix}m=-1\\m>-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow m\left(x^2-2x\right)+x^2-4x+4>0\)
\(\Leftrightarrow mx\left(x-2\right)+\left(x-2\right)^2>0\)
\(\Leftrightarrow\left(x-2\right)\left(mx+x-2\right)>0\)
\(\Leftrightarrow mx+x-2< 0\) (do \(x-2< 0\) \(\forall x\in\left[0;1\right]\))
\(\Leftrightarrow mx< 2-x\)
- Với \(x=0\) luôn thỏa mãn
- Với \(x>0\Rightarrow m< \frac{2-x}{x}=\frac{2}{x}-1\Rightarrow m< \min\limits_{\left[0;1\right]}\left(\frac{2}{x}-1\right)=1\)
Vậy \(m< 1\)
Bài 3:
a: TH1: m=-2
=>-2(-2-1)x+4<0
=>6x+4<0
=>x<-4/6(loại)
TH2: m<>-2
\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)
=4m^2-8m+4-16m-32
=4m^2-24m-28
Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)
b: TH1: m=3
=>5x-4>0
=>x>4/5(loại)
TH2: m<>3
Δ=(m+2)^2-4*(-4)(m-3)
\(=m^2+4m+4+16m-48=m^2+20m-44\)
Để bất phương trình vô nghiệm thì
\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)
a/ \(\Delta'=\left(m-1\right)^2-3\left(m+4\right)< 0\)
\(\Leftrightarrow m^2-5m-11< 0\Leftrightarrow\frac{5-\sqrt{69}}{2}< m< \frac{5+\sqrt{69}}{2}\)
b/ \(\Delta=\left(m+1\right)^2-4\left(2m+7\right)< 0\)
\(\Leftrightarrow m^2-6m-27< 0\Rightarrow-3< m< 9\)
c/ \(\Delta=\left(m-2\right)^2-8\left(-m+4\right)< 0\)
\(\Leftrightarrow m^2+4m-28< 0\Rightarrow-2-4\sqrt{2}< m< -2+4\sqrt{2}\)
d/ \(\left\{{}\begin{matrix}m< 0\\\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left(m-1\right)\left(-3m-1\right)< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m< -\frac{1}{3}\\m>1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -\frac{1}{3}\)
\(\begin{cases}x-my=2-4m\\mx+y=3m+1\end{cases}\)=>\(\begin{cases}mx-m^2y=2m-4m^2\left(1\right)\\mx+y=3m+1\left(2\right)\end{cases}\)
lấy (2)-(1) ta được
=>\(\begin{cases}y.\left(1+m^2\right)=1+m+4m^2\left(3\right)\\mx+y=3m+1\end{cases}\)
để hệ phương trình có nghiệm khi phương trình (3) có nghiệm
mà ta có 1+\(m^2\) \(\ne\)0 với mọi m nên hệ trên luôn có nghiệm với mọi m
\(\Delta'=m^2-2\left(m^2-2\right)=4-m^2\ge0\Rightarrow-2\le m\le2\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)
\(\Rightarrow P=\left|m^2-2-m-4\right|=\left|m^2-m-6\right|=\left|\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right|\)
Do \(-2\le m\le2\Rightarrow0\le\left(m-\dfrac{1}{2}\right)^2\le\dfrac{25}{4}\)
\(\Rightarrow\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\le0\) \(\Rightarrow P=\dfrac{25}{4}-\left(m-\dfrac{1}{2}\right)^2\le\dfrac{25}{4}\)
\(\Rightarrow P_{max}=\dfrac{25}{4}\) ; dấu "=" xảy ra khi \(m=\dfrac{1}{2}\)
Lời giải:
Để pt có 2 nghiệm pb thì \(\Delta'=m^2-2(m^2-2)>0\Leftrightarrow 2> m> -2\)
Nếu $x_1,x_2$ là nghiệm của pt đã cho thì theo định lý Viete ta có:
\(\left\{\begin{matrix} x_1+x_2=-m\\ x_1x_2=\frac{m^2-2}{2}\end{matrix}\right.\)
Khi đó:
\(P=|2x_1x_2+x_1+x_2-4|=|2.\frac{m^2-2}{2}+(-m)-4|\)
\(=|m^2-m-6|=|(m-3)(m+2)|\)
\(=|m-3||m+2|=(3-m)(m+2)=m+6-m^2\) (do \(-2< m< 2\))
\(=\frac{25}{4}-(m-\frac{1}{2})^2\leq \frac{25}{4}\)
Vậy \(P_{\max}=\frac{25}{4}\Leftrightarrow m=\frac{1}{2}\)
5.
(x^2 -1)(x^2 +9) <0
(x+3)(x+1)(x-1)(x-3)<0
x \(\in\)(-3;-1)U(1;3)
a/ Để BPT nghiệm đúng với mọi x:
\(\left\{{}\begin{matrix}a=m-1>0\\\Delta'=\left(m-1\right)^2+\left(m-1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\left(m-1\right)\le0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>1\\0\le m\le1\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
b/ Để BPT vô nghiệm
\(\Leftrightarrow\left(m-4\right)x^2-5\left(m-4\right)x-2\left(m-4\right)\le0\) nghiệm đúng \(\forall x\)
- Với \(m=4\) BPT trở thành \(0\le0\) (đúng)
- Với \(m\ne4\):
Hệ điều kiện:
\(\left\{{}\begin{matrix}a=m-4< 0\\\Delta=25\left(m-4\right)^2+8\left(m-4\right)^2\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Vậy \(m=4\) thì BPT vô nghiệm
b/ tại sao bất pt vô nghiệm lại ≤ 0 vậy bạn