K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 4 2019

a/ Để BPT nghiệm đúng với mọi x:

\(\left\{{}\begin{matrix}a=m-1>0\\\Delta'=\left(m-1\right)^2+\left(m-1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\left(m-1\right)\le0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m>1\\0\le m\le1\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

b/ Để BPT vô nghiệm

\(\Leftrightarrow\left(m-4\right)x^2-5\left(m-4\right)x-2\left(m-4\right)\le0\) nghiệm đúng \(\forall x\)

- Với \(m=4\) BPT trở thành \(0\le0\) (đúng)

- Với \(m\ne4\):

Hệ điều kiện:

\(\left\{{}\begin{matrix}a=m-4< 0\\\Delta=25\left(m-4\right)^2+8\left(m-4\right)^2\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Vậy \(m=4\) thì BPT vô nghiệm

27 tháng 4 2019

b/ tại sao bất pt vô nghiệm lại ≤ 0 vậy bạn

9 tháng 5 2019

a.Thay m=0, BPT có dạng \(x^2-x+6>=0\)

=> Tập nghiệm S thuộc R

b. Có 2 nghiệm trái dấu khi a.c < 0

m2-5m+6 <0 => Tập nghiệm S= (2;3)

NV
9 tháng 5 2019

a/ \(x^2-x+6\ge0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{23}{4}\ge0\) luôn đúng

Vậy nghiệm của BPT là \(x\in R\)

b/ Để phương trình có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\Leftrightarrow m^2-5m+6< 0\)

\(\Leftrightarrow\left(m-2\right)\left(m-3\right)< 0\Leftrightarrow2< m< 3\)

NV
20 tháng 4 2019

Câu 1:

Pt có 2 nghiệm là 2 số đối nhau

\(\Rightarrow x_1+x_2=0\Rightarrow\frac{2\left(m^2-1\right)}{m^2-2m+3}=0\Rightarrow m=\pm1\)

Thay lại hai giá trị vào pt để thử

Câu 2:

- Với \(m+1=0\Rightarrow m=-1\) BPT trở thành: \(1>0\) (đúng)

- Với \(m\ne-1\), để BPT đúng với mọi x thì:

\(\left\{{}\begin{matrix}\Delta'< 0\\m+1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)^2+m\left(m+1\right)>0\\m>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)\left(2m+1\right)>0\\m>-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>-\frac{1}{2}\end{matrix}\right.\\m>-1\end{matrix}\right.\) \(\Rightarrow m>-\frac{1}{2}\)

Vậy \(\left[{}\begin{matrix}m=-1\\m>-\frac{1}{2}\end{matrix}\right.\)

NV
2 tháng 3 2020

\(\Leftrightarrow m\left(x^2-2x\right)+x^2-4x+4>0\)

\(\Leftrightarrow mx\left(x-2\right)+\left(x-2\right)^2>0\)

\(\Leftrightarrow\left(x-2\right)\left(mx+x-2\right)>0\)

\(\Leftrightarrow mx+x-2< 0\) (do \(x-2< 0\) \(\forall x\in\left[0;1\right]\))

\(\Leftrightarrow mx< 2-x\)

- Với \(x=0\) luôn thỏa mãn

- Với \(x>0\Rightarrow m< \frac{2-x}{x}=\frac{2}{x}-1\Rightarrow m< \min\limits_{\left[0;1\right]}\left(\frac{2}{x}-1\right)=1\)

Vậy \(m< 1\)

30 tháng 12 2022

Bài 3:

a: TH1: m=-2

=>-2(-2-1)x+4<0

=>6x+4<0

=>x<-4/6(loại)

TH2: m<>-2

\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)

=4m^2-8m+4-16m-32

=4m^2-24m-28

Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)

b: TH1: m=3

=>5x-4>0

=>x>4/5(loại)

TH2: m<>3

Δ=(m+2)^2-4*(-4)(m-3)

\(=m^2+4m+4+16m-48=m^2+20m-44\)

Để bất phương trình vô nghiệm thì

\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)

NV
8 tháng 2 2020

a/ \(\Delta'=\left(m-1\right)^2-3\left(m+4\right)< 0\)

\(\Leftrightarrow m^2-5m-11< 0\Leftrightarrow\frac{5-\sqrt{69}}{2}< m< \frac{5+\sqrt{69}}{2}\)

b/ \(\Delta=\left(m+1\right)^2-4\left(2m+7\right)< 0\)

\(\Leftrightarrow m^2-6m-27< 0\Rightarrow-3< m< 9\)

c/ \(\Delta=\left(m-2\right)^2-8\left(-m+4\right)< 0\)

\(\Leftrightarrow m^2+4m-28< 0\Rightarrow-2-4\sqrt{2}< m< -2+4\sqrt{2}\)

d/ \(\left\{{}\begin{matrix}m< 0\\\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left(m-1\right)\left(-3m-1\right)< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m< -\frac{1}{3}\\m>1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -\frac{1}{3}\)

21 tháng 5 2016

\(\begin{cases}x-my=2-4m\\mx+y=3m+1\end{cases}\)=>\(\begin{cases}mx-m^2y=2m-4m^2\left(1\right)\\mx+y=3m+1\left(2\right)\end{cases}\)

lấy (2)-(1) ta được

=>\(\begin{cases}y.\left(1+m^2\right)=1+m+4m^2\left(3\right)\\mx+y=3m+1\end{cases}\)

để hệ phương trình có nghiệm khi phương trình (3) có nghiệm

mà ta có 1+\(m^2\) \(\ne\)0 với mọi m nên hệ trên luôn có nghiệm với mọi m

 

NV
12 tháng 11 2018

\(\Delta'=m^2-2\left(m^2-2\right)=4-m^2\ge0\Rightarrow-2\le m\le2\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)

\(\Rightarrow P=\left|m^2-2-m-4\right|=\left|m^2-m-6\right|=\left|\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right|\)

Do \(-2\le m\le2\Rightarrow0\le\left(m-\dfrac{1}{2}\right)^2\le\dfrac{25}{4}\)

\(\Rightarrow\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\le0\) \(\Rightarrow P=\dfrac{25}{4}-\left(m-\dfrac{1}{2}\right)^2\le\dfrac{25}{4}\)

\(\Rightarrow P_{max}=\dfrac{25}{4}\) ; dấu "=" xảy ra khi \(m=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Lời giải:

Để pt có 2 nghiệm pb thì \(\Delta'=m^2-2(m^2-2)>0\Leftrightarrow 2> m> -2\)

Nếu $x_1,x_2$ là nghiệm của pt đã cho thì theo định lý Viete ta có:

\(\left\{\begin{matrix} x_1+x_2=-m\\ x_1x_2=\frac{m^2-2}{2}\end{matrix}\right.\)

Khi đó:

\(P=|2x_1x_2+x_1+x_2-4|=|2.\frac{m^2-2}{2}+(-m)-4|\)

\(=|m^2-m-6|=|(m-3)(m+2)|\)

\(=|m-3||m+2|=(3-m)(m+2)=m+6-m^2\) (do \(-2< m< 2\))

\(=\frac{25}{4}-(m-\frac{1}{2})^2\leq \frac{25}{4}\)

Vậy \(P_{\max}=\frac{25}{4}\Leftrightarrow m=\frac{1}{2}\)

9 tháng 2 2018

5.

(x^2 -1)(x^2 +9) <0

(x+3)(x+1)(x-1)(x-3)<0

x \(\in\)(-3;-1)U(1;3)