Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm
Làm câu 2 trước vậy , câu 1 để sau
a, pt có nghiệm \(x=2-\sqrt{3}\)
\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)
\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)
\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)
Vì VP là số hữu tỉ
=> VT là số hữu tỉ
Mà \(\sqrt{3}\)là số vô tỉ
=> 4a + b + 15 = 0
=> 7a + 2b + 25 = 0
Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)
Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)
b, Với a = -5 ; b = 5 ta có pt:
\(x^3-5x^2+5x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)
Giả sử x1 = 1 là 1 nghiệm của pt ban đầu
x2 ; x3 là 2 nghiệm của pt (1)
Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)
Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)
\(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)
\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)
\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)
\(\Leftrightarrow x^5_2+x_3^5+4=728\)
\(\Leftrightarrow x_2^5+x_3^5=724\)
Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)
\(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)
\(=1+724\)
\(=725\)
Vậy .........
Câu 1 đây , lừa người quá
Giả sử pt có 2 nghiệm x1 ; x2
Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)
\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)
Lại có \(x_1+x_2=m^2\inℕ^∗\)
Mà x1 hoặc x2 nguyên
Nên suy ra \(x_1;x_2\inℕ^∗\)
Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)
\(\Leftrightarrow2m+2-m^2+1\ge0\)
\(\Leftrightarrow-1\le m\le3\)
Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)
Thử lại thấy m = 3 thỏa mãn
Vậy m = 3
1)Xét pt hoành độ của (P) và (d) ta có:
\(x^2=2x+2m\)
\(x^2-2x-2m=0\)
thay m=\(\frac{1}{3}\)
\(x^2-2x-2.\frac{1}{3}=0\)
\(x^2-2x-\frac{2}{3}=0\)
GPT ta được:m=\(\frac{3+\sqrt{15}}{3}\)
m=\(\frac{3-\sqrt{15}}{3}\)
b)Vì A(x1;x2) thuộc (P)=>\(y_1=x_1^2\)
B(x2;y2) thuộc (P)=>\(y_2=x_2^2\)
áp dụng viet đc:
\(x_1+x_2=2\)
\(x_1.x_2=-2m\)
Ta có:(1+y1)(1+y2)=5
\(\left(1+x_1^2\right)\left(1+x_2^2\right)=5\)
\(1+x_2^2+x_1^2+x_1^2x_2^2=5\)
1+(x1+x2)^2-2x1x2+x1^2x2^2=5
1+(2)^2-2.(-2m)+(-2m)^2=5
1+4+4m+4m^2-5=0
4m^2+4m=0
m=-1 và m=0
2)Δ'=(-2m)^2-2.(2m^2-9)
=4m^2-4m^2+2
=2>0 ∀m
=>pt có 2 nghiệm phân biệt ∀ m
b)áp dụng viet:
x1+x2=4m/4=2m
x1.x2=2m^2-1/2
ta có :\(2x_1^2+4mx_2+2m^2-9< 0\)
\(2\left(x_1^2+2mx_2\right)+2m^2-9< 0\)
mà ta có x1+x2=2m
=>\(2\left(x_1^2+\left(x_1+x_2\right)x_2\right)+2m^2-9< 0\)
\(2\left(x_1^2+x_1x_2+x_2^2\right)+2m^2-9< 0\)
2{(x1^2+x2^2)+x1x2}+2m^2-9<0
2{x1+x2)^2-2x1x2+x1x2)+2m^2-9<0(cái này dùng phương pháp thêm bớt để tạo hàng đẳng thức nha bạn)
2{(x1+x2)^2-x1x2)+2m^2-9<0
còn lại bạn tự thay số rồi tính nha.Nhớ tick cho mk đó
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
a. \(\Delta'=\left(m+1\right)^2-m=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall m\)
Phương trình luôn có 2 nghiệm pb
b. Theo Viet \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m\end{matrix}\right.\)
\(x_1^2+x_2^2=2\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2\)
\(\Leftrightarrow\left(2m+2\right)^2-2m-2=0\)
\(\Leftrightarrow4m^2+6m+2=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=-\frac{1}{2}\end{matrix}\right.\)
c. Phương trình hoành độ giao điểm: \(x^2-2\left(m+1\right)x+m=0\) (1)
Giống câu a, ta có (d) luôn cắt (P) tại 2 điểm pb
Để 2 hoành độ đều dương
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)>0\\x_1x_2=m>0\end{matrix}\right.\) \(\Rightarrow m>0\)