K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 5 2020

Tọa độ A: \(\left\{{}\begin{matrix}y=0\\y=\left(m^2+1\right)x+2\end{matrix}\right.\) \(\Rightarrow A\left(-\frac{2}{m^2+1};0\right)\)

\(\Rightarrow OA=\left|x_A\right|=\frac{2}{m^2+1}\)

Tọa độ B: \(x=0\Rightarrow y=2\Rightarrow B\left(0;2\right)\Rightarrow OB=\left|y_B\right|=2\)

\(S_{OAB}=\frac{1}{2}OA.OB=\frac{2}{m^2+1}=\frac{1}{2}\)

\(\Rightarrow m^2+1=4\Rightarrow m=\pm\sqrt{3}\)

b/

Gọi H là hình chiếu vuông góc của O lên (d)

\(\Rightarrow OH\) là k/c từ O đến (d)

Theo hệ thức lượng: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{OA^2}+\frac{1}{4}\)

\(\Rightarrow OH=\frac{2OA}{\sqrt{OA^2+4}}=\frac{2}{\left(m^2+1\right)\sqrt{\frac{1}{\left(m^2+1\right)^2}+1}}=\frac{2}{\sqrt{m^2+2}}\le\sqrt{2}\)

Dấu "=" xảy ra khi \(m=0\)

21 tháng 5 2016

Hoa Sinh Thcs Gia Thuy

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

28 tháng 4 2019

a, Ta có \(\Delta'=\left(m-1\right)^2-m^2+9\)

                    \(=m^2-2m+1-m^2+9\)

                     \(=10-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\Leftrightarrow m=5\)

Với m = 5 thì pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m-1}{1}=\frac{5-1}{1}=4\)

b,Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow m\le5\)

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-9\end{cases}}\)

Ta có \(\frac{x_1^2+x_2^2}{2}-x_1-x_2=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}-\left(x_1+x_2\right)\)

                                            \(=\frac{\left(x_1+x_2\right)^2}{2}-x_1x_2-\left(x_1+x_2\right)\)

                                             \(=\frac{4\left(m-1\right)^2}{2}-m^2+9-2\left(m-1\right)\)

                                             \(=2\left(m-1\right)^2-m^2+9-2m+2\)

                                               \(=2m^2-4m+2-m^2+9-2m+2\)

                                                \(=m^2-6m+13\)

                                                \(=\left(m-3\right)^2+4\ge4\)

Dấu "=" xảy ra <=> m = 3 (tm)