Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
32006 + 32005 - 32004
= 32004 . ( 32 + 3 - 1 )
= 32004 . ( 9 + 3 -1 )
= 32004 . 11 ⋮ 11
b) Ta có ;
20061000 + 2006999
= 2006999 . ( 2006 + 1 )
= 2006999 . 2007 ⋮ 2007
c/ 2x - 1 = \(5^{98}:5^{96}\)
2x - 1 = \(5^2\) = 25
2x = 25 + 1 = 26
x = 26 : 2
x = 13
d/ 7x + 3 = \(3^5.2^3.9\)
7x + 3 = \(3^5.3^2.8=3^7.8=2187.8\)
7x + 3 = \(17496\)
7x = 17496 - 3 = 17493
x = 17493 : 7
x = 2499
e/\(2^{2x+6}=1\)
\(2^{2x+6}=2^0\)
2x + 6 = 0
2x = 0 - 6 = - 6
x = - 6 : 2
x = - 3
j/ \(2^x=8\)
\(2^x=2^3\)
x = 3
g/ \(2^x:2^3=16\)
\(2^{x-3}=2^4\)
x - 3 = 4
x = 4 + 3
x = 7
h/ \(2^x+2^{x+1}+2^{x+2}=56\)
\(2^x\left(1+2+2^2\right)\) = 56
\(2^x.7=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
x = 3
Bài a, b thiên phong giải r, mk chỉ làm những bài còn lại thôi. Chúc bạn học tốt!!!
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
Bài 1 :
a, Ta có : \(\left(-123\right)+\left|-13\right|+\left(-7\right)\)
= \(\left(-123\right)+13+\left(-7\right)=\left(-117\right)\)
b, Ta có : \(\left|-10\right|+\left|45\right|+\left(-\left|-455\right|\right)+\left|-750\right|\)
= \(10+45-455+750=350\)
c, Ta có : \(-\left|-33\right|+\left(-15\right)+20-\left|45-40\right|-57\)
= \(\left(-33\right)+\left(-15\right)+20-5-57=-90\)
a) \(A=1+3+3^2+.....+3^{10}⋮4\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+.......+\left(3^9+3^{10}\right)\)
\(=\left(1+3\right)+\left(3^2\cdot1+3^2\cdot3\right)+.....+\left(3^9\cdot1+3^9\cdot3\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^9\left(1+3\right)\)
\(=4\cdot1+3^2\cdot4+.......+3^9\cdot4\)
\(=4\cdot\left(1+3^2+.....+3^9\right)⋮4\)
Do đó A \(⋮\) 4
b) \(B=16^5+2^{15}⋮33\)
Ta có \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\cdot2^5+2^{15}\cdot1\)
\(=2^{15}\cdot\left(2^5+1\right)\)
\(=2^5\cdot\left(32+1\right)\)
\(=2^{15}\cdot33⋮33\)
Do đó \(B⋮33\)