Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 3 số tự nhiên liên tiếp \(2005^n,2005^n+1,2005^n+2\) luôn có ít nhất 1 số chia hết cho 3
Mà:\(2005\equiv1\)(mod 3)
\(\Rightarrow2005^n\equiv1^n=1\)(mod 3)
\(\Rightarrow2005^n\) không chia hết cho 3
Nên trong 2 số \(2005^n+1,2005^n+2\) luôn có 1 số chia hết cho 3
\(\Rightarrow\left(2005^n+1\right)\left(2005^n+2\right)⋮3\)
Xét \(n=2k\left(k\in N\right)\)Ta có :
\(\left(2005^n+1\right)\left(2005^n+2\right)=\left(2005^{2k}+1\right)\left(2005^{2k}+2\right)\)
\(=\left(2005^{2k}+1\right)\left(2005^{2k}-1+3\right)\)
Vì \(2005^{2k}-1⋮2004⋮3\) do đó \(\left(2005^n+1\right)\left(2005^n+2\right)⋮3\)
Xét \(n=2k+1\) thì \(2005^n+1=2005^{2k+1}+1⋮2007⋮3\)
Ta có ngay ĐPCM
Lời giải:
Ta có:
\(3x+5y\vdots 7\)
\(\Leftrightarrow 4(3x+5y)\vdots 7\)
\(\Leftrightarrow 12x+20y\vdots 7\)
\(\Leftrightarrow 7x+5(x+4y)\vdots 7\)
\(\Leftrightarrow 5(x+4y)\vdots 7\)
\(\Leftrightarrow x+4y\vdots 7\) (do \(5\) không chia hết cho $7$ )
Do đó ta có đpcm.
Nhớ rằng dấu "\(\Leftrightarrow \)" tương ứng với phép chứng minh cả hai chiều.
Ta có 3x+5y\(⋮\)7
\(\Rightarrow\)4(3x+5y)\(⋮\)7
\(\Rightarrow\)12x+20y\(⋮\)7
\(\Rightarrow\)7x+5(x+4y)\(⋮\)7
\(\Leftrightarrow\)5(x+4y)\(⋮7\)
\(\Leftrightarrow\)x+4y\(⋮\)7
\(\Rightarrow\)dpcm
1/
\(\left(x+2y\right)⋮5\Rightarrow3\left(x+2y\right)=\left(3x+6y\right)⋮5\)
Ta có \(\left(3x+6y\right)-\left(3x-4y\right)=10y⋮5\)
Mà \(\left(3x+6y\right)⋮5\Rightarrow\left(3x-4y\right)⋮5\)
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right).\left(3n+2\right)}=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right).\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{3n+2}{2.\left(3n+2\right)}-\frac{2}{2.\left(3n+4\right)}\right)\)
\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}=\frac{n}{2.\left(3n+2\right)}\)
1) \(\left(3x+5y\right)\left(x+4y\right)⋮7\)
\(\Leftrightarrow\orbr{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)
Ta có: \(\left(3x+5y\right)⋮7\Leftrightarrow5\left(3x+5y\right)=15x+25y=\left(x+4y\right)+2.7x+3.7y⋮7\)
\(\Leftrightarrow\left(x+4y\right)⋮7\)
Do đó \(\hept{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)
Suy ra \(\left(3x+5y\right)\left(x+4y\right)⋮\left(7.7\right)\Leftrightarrow\left(3x+5y\right)\left(x+4y\right)⋮49\)(ta có đpcm)
2) \(n^3-n=n\left(n^2-1\right)=n\left(n^2-n+n-1\right)=n\left[n\left(n-1\right)+\left(n-1\right)\right]\)
\(=n\left(n-1\right)\left(n+1\right)\)
Có \(n\left(n-1\right)\left(n+1\right)\)là tích của ba số nguyên liên tiếp mà trong ba số \(n-1,n,n+1\)có ít nhất một số chia hết cho \(2\), một số chia hết cho \(3\). Kết hợp với \(\left(2,3\right)=1\)
Suy ra \(n\left(n-1\right)\left(n+1\right)\)chia hết cho \(2.3=6\).