K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

Có (a+b+c)2 = 3(ab+bc+ac)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=3ab+3bc+3ac\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ac\)\(=0\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac\)\(=0\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\)\(=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a=b=c\)

19 tháng 10 2019

a ) có \(x^2+y^2+4x-2xy+4y+2019=\left(x-y\right)^2+4\left(x-y\right)+2019=49+28+2019=2096\)

b) \(x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2=\left(x-y\right)^3-\left(x-y\right)^2=343-49=294\)

c)\(x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)=x^3-y^3+x^2+y^2+xy-3x^2y+3xy^2-3xy=\left(x-y\right)^3+\left(x-y\right)^2=343+49=392\)

14 tháng 7 2017

a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)

\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=10^2-2.\left(-3\right)^2=82\)

b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)

 \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=1.\left(1-2xy-xy\right)+3xy=1\)

Các câu còn lại tương tự

25 tháng 7 2019

#)Giải :

a)\(A=x^2+2xy+y^2-4x-4y+1=\left(x^2+2xy+y^2\right)-4\left(x+y\right)+1=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3 vào biểu thức, ta được : \(A=3^2-4.3+1=-2\)

25 tháng 7 2019

hãy giải hết giúp mình vs

7 tháng 6 2015

c) \(C=\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left[\left(a+b\right)^2-ab\right]=3\left(9^2-ab\right)\)

\(\left(a+b\right)^2=81\Leftrightarrow a^2+2ab+b^2=81\Leftrightarrow a^2+b^2=81-2ab\)

\(\left(a-b\right)^2=9\Leftrightarrow a^2+b^2=9+2ab\)

=> \(81-2ab=9+2ab\Rightarrow4ab=72\Leftrightarrow ab=18\)

\(\Leftrightarrow C=3\left(81-18\right)=189\)

21 tháng 7 2016

\(D=\left(x^2+2xy+y^2\right)-4\left(x+y+1\right)\)

\(D=\left(x+y\right)^2-4.4=3^2-16=9-16=-7\)

25 tháng 7 2019

\(A=x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-12+1=-2\)

\(B=x^2-2xy+y^2-5x+5y+6=\left(x-y\right)^2-5\left(x-y\right)+6=7^2-5.7+6=20\)

25 tháng 7 2019

a)Ta có

A=\(x^2+2xy+y^2-4x-4y+1\)

=>A=\(\left(x+y\right)^2-4\left(x+y\right)+1\)

Mà x+y=3 nên

A=\(3^2-4\cdot3+1\)

A=-2

b)Ta có:

B=\(x^2-2xy+y^2-5x+5y+6\)

B=\(\left(x-y\right)^2-5\left(x-y\right)+6\)

Mà x-y=7 nên

B=\(7^2-5\cdot7+6\)

B=20

24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1