Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S=1/12+1/13+1/14+1/15+...+1/23
ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)
đặt A=1/12+1/13+1/14+...+1/17
ta có
1/13<1/12
1/14<1/12
..........................
.........................
1/17<1/12
=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)
=>A<1x6/12
=>A<1/2 (1)
Đặt B=1/18+1/19+...+11/23
ta có
1/19<1/18
1/20<1/18
...........................
..........................
1/23<1/18
=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)
=>B<1x 6/18
=>B<1/3 (2)
từ 1 và 2 =>S=A+B<1/2+1/3
=>S<5/6 (dpcm)
k cho mình nhé
Đặt S=1/12+1/13+1/14+1/15+...+1/23
ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)
đặt A=1/12+1/13+1/14+...+1/17
ta có
1/13<1/12
1/14<1/12
..........................
.........................
1/17<1/12
=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)
=>A<1x6/12
=>A<1/2 (1)
Đặt B=1/18+1/19+...+11/23
ta có
1/19<1/18
1/20<1/18
...........................
..........................
1/23<1/18
=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)
=>B<1x 6/18
=>B<1/3 (2)
từ 1 và 2 =>S=A+B<1/2+1/3
=>S<5/6 (dpcm)
k cho mình nhé
Bài 3:
Số nghịch đảo của $x$ là: $\frac{1}{x}$.
Theo bài ra ta có:
$5.\frac{1}{x}=\frac{1}{2}$
$\frac{1}{x}=\frac{1}{2}:5=\frac{1}{10}$
$x=10$
Vậy $x=10$
Bài 2:
a)
\(\frac{7}{12}+\frac{x}{15}=\frac{1}{20}\)
\(\frac{x}{15}=\frac{1}{20}-\frac{7}{12}=\frac{-8}{15}\)
\(x=-8\)
b)
\(x=\frac{1}{2}+25\text{%}x=\frac{1}{2}+\frac{x}{4}\)
\(\frac{3}{4}x=\frac{1}{2}\)
\(x=\frac{1}{2}:\frac{3}{4}=\frac{2}{3}\)
c)
\(x+\frac{-7}{15}=-1\frac{1}{20}=\frac{-21}{20}\)
\(x=\frac{-21}{20}+\frac{7}{15}=\frac{-7}{12}\)
Ta có:
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
\(...............\)
\(\frac{1}{19}>\frac{1}{20}\)
\(\frac{1}{20}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+......+\frac{1}{19}+\frac{1}{20}>\frac{10}{20}\) ( vì S có 20 số hạng )
\(\Rightarrow S>\frac{1}{2}\)
Vậy: \(S>\frac{1}{2}\)
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{100}\)
\(A< \frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{100.101}\)
\(A< \frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{101}\)
\(A< \frac{1}{10}-\frac{1}{101}=\frac{101}{1010}-\frac{10}{1010}=\frac{91}{1010}< \frac{505}{1010}\)
\(A< \frac{1}{2}\)