Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong tam giac vuong ABH Cco \(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\)
AHC co \(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\left(2\right)\)
tu (1) va(2 ) suy ra \(AB^2-BH^2=AC^2-HC^2\Rightarrow AB^2+HC^2=AC^2+BH^2\)
Từ I dựng đường thẳng vuông góc với AC và cắt BC tại E. Mà AB cũng vuông góc với AC => IE//AB => IE là đường trung bình của tam giác ABC => AB=2.IE và EB=EC=BC/2
=> \(AB^2=4.IE^2\)
Xét tam tg vuông EIC có
\(IE^2=ED.EC\) (Bình phương 1 cạnh góc vuông = tích của cạnh huyền và hình chiếu của cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AB^2=4.IE^2=4.ED.EC\) (*)
Ta có \(EC=\frac{BC}{2}\) và \(ED=EC-CD=\frac{BC}{2}-CD\) Thay vào (*) ta có
\(AB^2=4.\left(\frac{BC}{2}-CD\right).\frac{BC}{2}=4.\left(\frac{BC^2}{4}-\frac{CD.BC}{2}\right)\)
\(AB^2=BC^2-2.CD.BC\) (**)
Mà \(BC=BD+CD\) Thay vào (**)
\(\Rightarrow AB^2=\left(BD+CD\right)^2-2.CD.\left(BD+CD\right)=BD^2+CD^2+2.BD.CD-2.BD.CD-2.CD^2\)
\(\Rightarrow AB^2=BD^2-CD^2\) (dpcm)
Từ A hạ AK vuông góc với BC. Ta có KD = DC
Mà : BD^2 - CD^2=(BC-CD)^2 - CD^2= BC^2+CD^2-2BC.CD
= BC^2-BC.2CD=BC^2-BC.KC
= BC^2-AC^2=AB^2(dpcm)
(*) : AB^2=BC^2-AC^2
Từ I dựng đường thẳng vuông góc với AC và cắt BC tại E. Mà AB cũng vuông góc với AC => IE//ABIE//AB => IE là đường trung bình của tam giác ABC => AB=2.IEAB=2.IE và EB=EC=BC2EB=EC=BC2
=> AB2=4.IE2AB2=4.IE2
Xét tam giác vuông EIC có :
IE2=ED.ECIE2=ED.EC (Bình phương 1 cạnh góc vuông = tích của cạnh huyền và hình chiếu của cạnh góc vuông trên cạnh huyền)
⇒AB2=4.IE2=4.ED.EC⇒AB2=4.IE2=4.ED.EC (1)
Ta có EC=BC2EC=BC2 và ED=EC−CD=BC2−CDED=EC−CD=BC2−CD Thay vào (1) ta có:
AB2=4.(BC2−CD).BC2=4.(BC24−CD.BC2)AB2=4.(BC2−CD).BC2=4.(BC24−CD.BC2)
AB2=BC2−2.CD.BCAB2=BC2−2.CD.BC (2)
Mà BC=BD+CDBC=BD+CD Thay vào (2)
⇒AB2=(BD+CD)2−2.CD.(BD+CD)=BD2+CD2+2.BD.CD−2.BD.CD−2.CD2⇒AB2=(BD+CD)2−2.CD.(BD+CD)=BD2+CD2+2.BD.CD−2.BD.CD−2.CD2
⇒AB2=BD2−CD2⇒AB2=BD2−CD2 (đpcm)
A B C D
ta có \(AC=\sqrt{AD^2+DC^2}>\sqrt{AD^2+BA^2}=DB\) vậy AC>BD
. từ trên ta có :
\(\hept{\begin{cases}AC^2=AD^2+DC^2\\BD^2=AD^2+BA^2\end{cases}\Rightarrow AC^2-BD^2=CD^2-AB^2}\)