Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 5x >= 0
=> x >= 0
=> 2x - 3 = 5x
=> 2x - 5x = 3
=> -3x = 3
=> x = -1
b) Vì x + 2 lớn hơn hoặc bằng 0
=> x = x + 2
=> x - x = 2
=> 0 = 2 ( loại )
Bổ sung câu b)
TH2 :
x = -x - 2
x + x = -2
2x = -2
=> x = -1
Vậy, x = -1
\(a^2+b^2\ge2ab\)
- c1: xài AM-GM \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)
Dấu "=" khi a=b
- C2: \(a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\). Dấu "=" khi a=b
a: |3x-1|<=5
=>3x-1>=-5 và 3x-1<=5
=>x>=-4/3 và x<=2
b: \(\left(x^2-2\right)\left(16-x^2\right)>=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2-16\right)< =0\)
\(\Leftrightarrow2< =x^2< =16\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}< =x< =4\\-\sqrt{2}>=x>=-4\end{matrix}\right.\)
Bài 1 :
a ) Vì \(\left(x-1\right)^2\ge0\) \(\forall\) \(x\)
\(\Rightarrow\left(x-1\right)^2+5\ge5\) \(\forall\) \(x\) (đpcm)
b ) Vì \(\left(x-5\right)^2\ge0\) \(\forall\) \(x\)
\(\Rightarrow A=\left(x-5\right)^2+3\ge3\) \(\forall\) \(x\)
Dấu "=" xảy ra khi \(\left(x-5\right)^2=0\Rightarrow x=5\)
Vậy GTNN của A là 3 <=> x = 5
Bài 2 :
a ) \(A=x^2-2x+2=x^2-x-x+1+1=x\left(x-1\right)-\left(x-1\right)+1\)
\(=\left(x-1\right)\left(x-1\right)+1=\left(x-1\right)^2+1=B\) (đpcm)
b ) Vì \(\left(x-1\right)^2\ge0\) \(\forall\) \(x\)
\(\Rightarrow A=\left(x-1\right)^2+1\ge1\) \(\forall\) \(x\) (Đpcm)
a,ta có a^2+2ab+b^2=[a+b]^2 lớn hơn hoặc bằng 0
b, a^2-2ab+b^2=[a-b]^2 lớn hơn hưacj bằng 0