K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Ta có: \(f\left(x\right)=ax^2+bx+c\)

Do a, c là hai số đối nhau nên a + c = 0

\(\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=a+b+c\\f\left(-1\right)=a-b+c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=b\\f\left(-1\right)=-b\end{matrix}\right.\) ( do a, c là 2 số đối nhau, a + c = 0 )

\(\Rightarrow f\left(1\right).f\left(-1\right)=b.\left(-b\right)=-b^2\)

\(b^2\ge0\Rightarrow-b^2\le0\)

\(\Rightarrow f\left(1\right).f\left(-1\right)\le0\) ( đpcm )

Vậy...

18 tháng 4 2019

Lộn, phải là bé hơn hoặc bằng 0

18 tháng 4 2019

25a+b+2c =0 à đúng ko vậy 

21 tháng 5 2018

1, Ta có :

\(A+B+C=\left(5x^2+6xy-7y^2\right)+\left(-9x^2-8xy+11y^2\right)+\left(6x^2+2xy-3y^2\right)\\ =\left(5x^2-9x^2+6x^2\right)+\left(6xy-8xy+2xy\right)+\left(-7y^2+11y^2-3y^2\right)\\ =2x^2+y^2\)

\(2x^2+y^2\ge0\forall x;y\)

\(\Rightarrow A+B+C\ge0\\ \RightarrowĐpcm\)

2, Đề bài không đủ.

3, Theo bài ra có :

\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

Ta có :

\(ab+2ab+3ca=3ab+3ca=3a\left(b+c\right)\\ Màb+c=-a\\ \Rightarrow ab+2ab+3ca=3a\cdot-a=-3\cdot a^2\)

Nếu a = 0 thì \(ab+2ab+3ca=0\)

Nếu a < 0 hoặc a > 0 thì \(ab+2ab+3ca\ge0\)

\(\RightarrowĐpcm\)

4 tháng 5 2017

Ta có: P(-1) = a-b+c

P(-2) = 4a-2b+c

=> P(-1)+P(-2) = 5a-3b+2c = 0

=> P(-1) = P(2)

=> P(-1).P(-2) = P(2).P(-2) = - [P(2)]2 \(\le\)0

Vậy P(-1).P(-2) \(\le\)0

4 tháng 5 2017

...

=> ...

=> P(-1) = - P(-2)

=> P(-1).P(-2) = - P2(-2) \(\le\)0 vì P2(-2) \(\ge\)0

=> P(-1).P(-2) \(\ge\)0

Câu trả lời này mới đúng , vừa nãy mk nhầm tưởng là nhỏ hơn hoặc bằng, sau đó mk nhìn lại đề bài nên mk sửa