Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=\(^{5x^2+20x+2010}\)
Vì C \(\ge\)2010
Nên GTNN của C là 2010
Khi \(5x^2+20x=0\)
x=0
A=XÉT \(X\le201Ó\)
TA ĐC X-2010+X-2011=2010-X+2011-X
<=>4021-2X
=>CÓ X\(\le\)2010 =>-X\(\le\) 2010 =>-2X\(\ge\)-4021
DẤU '' ='' XẢY RA KHI X=2010
B.,
( x + 1 ) + ( x + 2 ) + ( x + 3 ) +... + ( x + 100 ) = 5750
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750
( x . 100 ) + ( 1 . 100 ) . 100 : 2 = 5750
( x . 100 ) + 5050 = 5750
x . 100 = 5750 - 5050
x . 100 = 700
x = 700 : 100
x = 7
Vậy x = 7
a) \(\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Rightarrow x-\dfrac{1}{2}=0\)
\(\Rightarrow x=\dfrac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(\Rightarrow x-2=1\)
\(\Rightarrow x=3\)
c) \(\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\dfrac{-1}{2}\)
d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\).
a , \(\left(x-\dfrac{1}{2}\right)^2=0\)
<=> \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
b , \(\left(x-2\right)^2=1\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c , \(\left(2x-1\right)^3=-8\Rightarrow2x-1=-2\Rightarrow x=\dfrac{-1}{2}\)
d , \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4^2}\)
<=> \(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=\dfrac{-1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\)
Cho 3x^2-x=0 ta co
3x^2-x=0
x(3x-1)=0
x=0 hoac 3x-1=0
x=0 hoac x=1/3
có x^2 và y^6 luôn lớn hơn hoặc = 0 với mọi x,y thuộc z
=> x^2 và y^6 = 0
=> x=0 và y=0
\(\left(1-\frac{1}{15}\right)\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)...\left(1-\frac{1}{225}\right)\)
\(=\frac{14}{15}.\frac{20}{21}.\frac{27}{28}...\frac{224}{225}\)
\(=\frac{2.7}{3.5}.\frac{5.4}{7.3}.\frac{3.9}{4.7}...\frac{16.14}{15.15}\)
\(=\frac{2}{3}.\frac{14}{15}\) ( rút gọn )
\(=\frac{28}{45}\)