Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=5x^2+20x+2010\)
\(=5\left(x^2+4x+402\right)\)
\(=5\left(x^2+2.x.2+2^2+398\right)\)
\(=5\left[\left(x+2\right)^2+398\right]\)
VÌ \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+398\ge398\forall x\)
\(\Rightarrow C=5\left[\left(x+2\right)^2+398\right]\ge1990\forall x\)
Dấu "=" xảy ra <=> x = - 2
Vậy gtnn của C là 1990 tại x = - 2
1) Giá trị nhỏ nhất của A = 0
2) Giá trị nhỏ nhất của B = 2011
3) Gí trị nhỏ nhất của C = 2010
nếu bạn cần cách giải chi tiết thì nhắn tin gửi cho mk; mk sẽ giải cho
Bước1: Chứng minh: x>ln(1+x)>x-x^2/2 (khảo sát hàm lớp 12)
Bước2: Đặt A=1+1/2+1/3+...+1/N.
B=1+1/2^2+1/3^2+...+1/N^2.
C=1+1/1.2+1/2.3+...+1/(N-1).N
D=ln(1+1)+ln(1+1/2)+ln(1+1/3)+...
...+ln(1+1/N).
Bước 3: Nhận xét: 1/k(k+1)=1/k-1/(k+1)
suy ra C=2-1/N <2
Bước 4: Nhận xét ln(k+1)-lnk=ln(1+1/k)
suy ra D=ln(N+1)
Bước 5: Nhận xét B<C<2
Bước 6: Chứng minh A->+oo (Omerta_V đã CM)
Bước 7: Từ Bước1 suy ra:
A>D>A-1/2B>A-1.
Bước 8: Vậy A xấp sỉ D với sai số tuyệt đối bằng 1.
Mà A->+oo. Nên khi N rất lớn thì sai số tương đối có thể coi là 0.
Cụ thể hơn Khi N>2^k thì sai số tương đối < k/2
Vậy khi N lớn hơn 1000000 thì ta có thể coi A=ln(N+1).
vậy đáp án là 5
\(\frac{1+2y}{8}=\frac{1+4y}{24}=\frac{1+6y}{6x}=\frac{2\left(1+2y\right)-\left(1+4y\right)}{2.8-24}=\frac{1}{-8}\)
=> \(\frac{1+2y}{8}=\frac{1}{-8}\) => 1+2y = -1 => y = -1
\(\frac{1+6y}{6x}=\frac{1}{-8}\) => \(\frac{1+6.\left(-1\right)}{6x}=\frac{1}{-8}\)
=> \(\frac{-5}{6x}=\frac{1}{-8}\) => x = (-5).(-8)/6 = 20/3
Ta có:
\(a_2^2=a_1.a_3;a_3^2=a_2.a_4;...;a^2_{2010}=a_{2009}.a_{2011}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4};...;\frac{a_{2009}}{a_{2010}}=\frac{a_{2010}}{a_{2011}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2010}}{a_{2011}}\)
\(\Rightarrow\frac{a_1^{2010}}{a_2^{2010}}=\frac{a_2^{2010}}{a_3^{2010}}=...=\frac{a_{2010}^{2010}}{a_{2011}^{2010}}=\frac{a_1^{2010}+a_2^{2010}+...+a_{2010}^{2010}}{a_2^{2010}+a_3^{2010}+...+a_{2011}^{2010}}\) (1)
Ta lại có:
\(\frac{a_1^{2010}}{a_2^{2010}}=\frac{a_1}{a_2}.\frac{a_1}{a_2}...\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2009}}{a_{2010}}.\frac{a_{2010}}{a_{2011}}=\frac{a_1}{a_{2011}}\) (2)
Từ (1) và (2) ta suy ra
\(\frac{a_1^{2010}+a_2^{2010}+...+a_{2010}^{2010}}{a_2^{2010}+a_3^{2010}+...+a_{2011}^{2010}}=\frac{a_1}{a_{2011}}\)
Ta có :
\(a_2^2=a_1.a_3\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}\)
\(a^2_3=a_2.a_4\Rightarrow\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
\(............\)
\(a^2_{2010}=a_{2009}.a_{2011}\Rightarrow\frac{a_{2009}}{a_{2010}}=\frac{a_{2010}}{a_{2011}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=........=\frac{a_{2009}}{a_{2010}}=\frac{a_{2010}}{a_{2011}}\)
Đặt \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.......=\frac{a_{2010}}{a_{2011}}=k\)
\(\Rightarrow a_1=a_2.k\)
\(\Rightarrow a_1=a_3.k^2\)
\(\Rightarrow a_1=a_4.k^3\)
\(...............\)
\(\Rightarrow a_1=a_{2011}.k^{2010}\)
\(\Rightarrow\frac{a_1}{a_{2011}}=k^{2010}\) (1)
Ta có : \(k^{2010}=\left(\frac{a_1}{a_2}\right)^{2010}=\left(\frac{a_2}{a_3}\right)^{2010}=...=\left(\frac{a_{2010}}{a_{2011}}\right)^{2010}=\frac{a_1^{2010}}{a_2^{2010}}=\frac{a_2^{2010}}{a_3^{2010}}=....=\frac{a_{2010}^{2010}}{a_{2011}^{2010}}\)
\(=\frac{a_1^{2010}+a_2^{2010}+a_3^{2010}+....+a^{2010}_{2010}}{a_2^{2010}+a_3^{2010}+a_4^{2010}+....+a_{2011}^{2010}}\) ( theo TC DTSBN ) (2)
Từ (1) ; (2) \(\Rightarrow\frac{a_1^{2010}+a_2^{2010}+....+a_{2010}^{2010}}{a_2^{2010}+a_3^{2010}+....+a_{2011}^{2010}}=\frac{a_1}{a_{2011}}\) (đpcm)
C=\(^{5x^2+20x+2010}\)
Vì C \(\ge\)2010
Nên GTNN của C là 2010
Khi \(5x^2+20x=0\)
x=0
A=XÉT \(X\le201Ó\)
TA ĐC X-2010+X-2011=2010-X+2011-X
<=>4021-2X
=>CÓ X\(\le\)2010 =>-X\(\le\) 2010 =>-2X\(\ge\)-4021
DẤU '' ='' XẢY RA KHI X=2010
B.,