Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
Lời giải:
Vì : \(\left(3a+6\right)^2\ge0\) với mọi a
\(\left|\frac{1}{4}b-10\right|\ge0\)với mọi b
\(\left|c+3a\right|\ge0\)với mọi a; c
=> \(\left(3a+6\right)^2+\left|\frac{1}{4}b-10\right|+\left|c+3a\right|\ge0\)với mọi a; b ; c
=> \(\left(3a+6\right)^2+\left|\frac{1}{4}b-10\right|+\left|c+3a\right|=0\)
<=> \(\hept{\begin{cases}\left(3a+6\right)^2=0\\\left|\frac{1}{4}b-10\right|=0\\\left|c+3a\right|=0\end{cases}}\)
<=> \(\hept{\begin{cases}3a+6=0\\\frac{1}{4}b-10=0\\c+3a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=40\\c=6\end{cases}}\)
Kết luận: Vậy a = -2 ; b= 40 ; c= 6.
Vì \(\left(3a+6\right)^2\ge0,\forall a\)
\(\left|\frac{1}{4}b-10\right|\ge0,\forall b\)
\(\left|c+3a\right|\ge0,\forall c\)
\(\Rightarrow\left(3a+6\right)^2+\left|\frac{1}{4}b-10\right|+\left|c+3a\right|\ge0,\forall a,b,c\)
Dấu = xảy ra khi và chỉ khi
\(\Rightarrow\left(3a+6\right)^2+\left|\frac{1}{4}b-10\right|+\left|c+3a\right|=0\)
\(\hept{\begin{cases}\left(3a+6\right)^2=0\\\left|\frac{1}{4}b-10\right|=0\\\left|c+3a\right|=0\end{cases}\Rightarrow\hept{\begin{cases}a=-2\\b=40\\c=6\end{cases}}}\)
\(\text{Vậy }\hept{\begin{cases}a=-2\\b=40\\c=6\end{cases}}\)
Bài 2:
A = (a+b)(1/a+1/b)
Có: \(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)
=> ĐPCM
1.b)
Pt (1) : 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
Pt (2) : (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}
\(2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2\left(a^2+b^2+c^2\right)+4\frac{ab+bc+ca}{abc}.\)
\(=2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)\)(vì abc=1)
\(=2\left(a^2+b^2+c^2+2ab+2bc+2ac\right)\)
\(=2\left(a+b+c\right)^2\)
Ta có \(a+b+c\ge3\sqrt[3]{abc}=3\)(bất đẳng thức cô si cho ba số không âm)
Đặt \(a+b+c=x\ge3\)
Dễ thấy : \(2x^2-7x+3=\left(2x-1\right)\left(x-3\right)\ge0\)
Hay \(2\left(a+b+c\right)^2-7\left(a+b+c\right)+3\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge7\left(a+b+c\right)-3\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow}a=b=c=1\)
Đặt A = a + b + c .
Áp dụng BĐT Cosi cho 3 số thực dương ta có : \(A\ge3^3\sqrt{abc}=3\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-7\left(a+b+c\right)+3\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\cdot\frac{ab+bc+ca}{abc}-7\left(a+b+c\right)+3\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)-7\left(a+b+c\right)+3\)
\(\Leftrightarrow2\left(a+b+c\right)^2-7\left(a+b+c\right)+3\)
\(\Leftrightarrow2A^2-7A+3=\left(2A-1\right)\left(A-3\right)\ge0\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+3\ge7\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le3\)Áp dụng BĐT AM-GM ta có :
\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+1+1}}+\frac{4\sqrt{3}}{c^6+1+2a^3+8}\)
\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{4\sqrt{3}}{2c^3+2a^3+8}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+4}\)
\(=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+1+1+1+1}\)
\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{6\sqrt{ac}}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{1}{\sqrt{3ac}}\)\(=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\right)\)
\(\le\frac{1}{\sqrt{3}}\sqrt{3\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}=\sqrt{\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}\le\sqrt{3}\) (Bunhiacopxki)
Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)
PS : Thánh cx đc phết ha; chế đc bài này tui mới khâm phục :)))
nó ko chém đâu anh nó chép trong toán tuổi thơ đấy,thk này khốn nạn lắm