K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

A=13−2√42

=7-2\(\sqrt{6}.\sqrt{7}\)+6

=\(\left(\sqrt{7}-\sqrt{6}\right)^2\)

=>\(\sqrt{A}=\sqrt{7}-\sqrt{6}\)

A=46+6√5

=45+2.\(3\sqrt{5}\)+1

=(\(3\sqrt{5}+1\))2

=>\(\sqrt{A}=3\sqrt{5}+1\)

31 tháng 7 2019

\(\sqrt{13-2\sqrt{42}}=\sqrt{6-2\sqrt{6}.\sqrt{7}+7}=\sqrt{\left(\sqrt{6}-\sqrt{7}\right)^2}=\left|\sqrt{6}-\sqrt{7}\right|=\sqrt{7}-\sqrt{6}\)

\(\sqrt{46+6\sqrt{5}}=\sqrt{45+6\sqrt{5}+1}=\sqrt{3^2.5+6\sqrt{5}+1}=\sqrt{3^2.5+2.3.\sqrt{5}+1^2}=\sqrt{\left(3.\sqrt{5}+1\right)^2}=3\sqrt{5}+1\)

\(\sqrt{12-3\sqrt{15}}=\sqrt{3}\sqrt{4-\sqrt{15}}=\sqrt{\frac{3}{2}}.\sqrt{8-2\sqrt{15}}=\sqrt{\frac{3}{2}}.\sqrt{3-2\sqrt{15}+5}=\sqrt{\frac{3}{2}}.\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{\frac{3}{2}}.\left(\sqrt{5}-\sqrt{3}\right)\)

\(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3-2\sqrt{15}+5}-\sqrt{8+2\sqrt{15}}=\sqrt{3-2\sqrt{3}\sqrt{5}+5}-\sqrt{3+2\sqrt{3}\sqrt{5}+5}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{5}=-2\sqrt{3}\)

\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\sqrt{\frac{1}{2}}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{1+2\sqrt{5}+5}-\sqrt{1-2\sqrt{5}+5}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\right)=\sqrt{\frac{1}{2}}\left(1+\sqrt{5}-\sqrt{5}+1\right)=\sqrt{\frac{1}{2}}.2=\sqrt{\frac{4}{2}}=\sqrt{2}\)

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

AH
Akai Haruma
Giáo viên
21 tháng 8 2019

Bài 1:

a)

\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)

b)

\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)

\(=3\sqrt{5}+1\)

c)

\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)

\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)

d)

\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)

\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2019

Bài 1:

a)

\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)

b)

\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)

\(=3\sqrt{5}+1\)

c)

\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)

\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)

d)

\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)

\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)

22 tháng 8 2018

\(A=\sqrt{13+4\sqrt{10}}=\sqrt{13+2\sqrt{40}}=\sqrt{8+2.\sqrt{5}.\sqrt{8}+5}=\sqrt{\left(\sqrt{8}+\sqrt{5}\right)^2}=\sqrt{8}+\sqrt{5}\)

\(B=\sqrt{46-6\sqrt{5}}=\sqrt{46-2\sqrt{45}}=\sqrt{\left(\sqrt{45}-1\right)^2}=\sqrt{45}-1=3\sqrt{5}-1\)

\(C=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{7}}\)

\(C=-\sqrt{3}-\sqrt{2}+\dfrac{\sqrt{5}+\sqrt{3}}{2}-\dfrac{\sqrt{7}+\sqrt{5}}{2}\)

\(C=-\sqrt{3}-\sqrt{2}+\dfrac{\sqrt{3}-\sqrt{7}}{2}\)

\(C=\dfrac{-2\sqrt{3}-2\sqrt{2}+\sqrt{3}-\sqrt{7}}{2}=\dfrac{-\sqrt{3}-2\sqrt{2}-\sqrt{7}}{2}\)

22 tháng 8 2018

Nga Văn sr thiếu vế :3

7 tháng 7 2017

\(A=\left(2-\sqrt{3}\right)\sqrt{4+2.2.\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)

các câu còn lại làm tương tự nhé bạn !

19 tháng 8 2017

Hà Nam răng từ\(\sqrt{4}.....\)sang đc 2+ căn 3 đó ???

14 tháng 6 2019

\(13-2\sqrt{42}=7-2\sqrt{42}+6\\ =\left(\sqrt{7}\right)^2-2\cdot\sqrt{7}\cdot\sqrt{6}+\left(\sqrt{6}\right)^2=\left(\sqrt{7}-\sqrt{6}\right)^2\)

\(46+6\sqrt{5}=\left(5+2\cdot\sqrt{5}\cdot3+9\right)+32=\left(\sqrt{5}+3\right)^2+32\)(ko rút đc)

\(\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\\ =\sqrt{3-\sqrt{5}}\cdot\sqrt{2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\sqrt{5-2\sqrt{5}+1}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\left(3+\sqrt{5}\right)\\ =4\left(3+\sqrt{5}\right)\)

NV
15 tháng 6 2019

\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}\sqrt{3-\left(\sqrt{3}+1\right)}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

Dễ dàng nhận ra

\(\sqrt{\sqrt{7}-\sqrt{3}}< \sqrt{\sqrt{7}+\sqrt{3}}\Rightarrow\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}< 0\)

Đặt \(x=\frac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}}{\sqrt{\sqrt{7}-2}}< 0\)

\(\Rightarrow x^2=\frac{\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}-2\sqrt{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}}{\sqrt{7}-2}\)

\(\Rightarrow x^2=\frac{2\sqrt{7}-2\sqrt{4}}{\sqrt{7}-2}=\frac{2\sqrt{7}-4}{\sqrt{7}-2}=\frac{2\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=2\)

\(\Rightarrow x=-\sqrt{2}\) (do \(x< 0\))

Bài 1:

a) Ta có: \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{45-2\cdot\sqrt{45}\cdot1+1}-\sqrt{9-2\cdot\sqrt{9}\cdot\sqrt{20}+20}\)

\(=\sqrt{\left(\sqrt{45}-1\right)^2}-\sqrt{\left(3-\sqrt{20}\right)^2}\)

\(=\left|\sqrt{45}-1\right|-\left|3-\sqrt{20}\right|\)

\(=\sqrt{45}-1-3+\sqrt{20}\)

\(=\sqrt{45}+\sqrt{20}-4\)

\(=\sqrt{5}\left(3+2\right)-4=5\sqrt{5}-4\)

b) Ta có: \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{8}+8}-\sqrt{45+2\cdot\sqrt{45}\cdot\sqrt{8}+8}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{8}\right)^2}-\sqrt{\left(\sqrt{45}+\sqrt{8}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{8}\right|-\left|\sqrt{45}+\sqrt{8}\right|\)

\(=\sqrt{8}-\sqrt{5}-\sqrt{45}-\sqrt{8}\)

\(=-\sqrt{5}-\sqrt{45}=-\sqrt{5}\left(1+\sqrt{9}\right)=-4\sqrt{5}\)

c) Ta có: \(\left(3-\sqrt{2}\right)\cdot\sqrt{7+4\sqrt{3}}\)

\(=\left(3-\sqrt{2}\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot2+4}\)

\(=\left(3-\sqrt{2}\right)\cdot\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(=\left(3-\sqrt{2}\right)\left(\sqrt{3}+2\right)\)

\(=3\sqrt{3}+6-\sqrt{6}-2\sqrt{2}\)

d) Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10+2\sqrt{21}}\)

\(=\left(\sqrt{7}-\sqrt{3}\right)\cdot\sqrt{7+2\cdot\sqrt{7}\cdot\sqrt{3}+3}\)

\(=\left(\sqrt{7}-\sqrt{3}\right)\cdot\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\)

\(=\left(\sqrt{7}-\sqrt{3}\right)\cdot\left(\sqrt{7}+\sqrt{3}\right)\)

\(=\left(\sqrt{7}\right)^2-\left(\sqrt{3}\right)^2=7-3=4\)

12 tháng 8 2019

\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)

\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)

\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ

\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)

\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)

\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)

\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)

#Học tốt ạ