\(\sqrt{A}\)

a) \(A=46+6\sqrt{5}\)

b)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

Bài 1: 

a: \(=\left|5-\sqrt{3}\right|-\left|\sqrt{3}-2\right|\)

\(=5-\sqrt{3}-2+\sqrt{3}=3\)

b; \(B=\dfrac{\left(2-\sqrt{3}\right)\cdot\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\cdot\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\cdot\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)

\(=\dfrac{6\sqrt{3}+10-9-5\sqrt{3}-6\sqrt{3}+10-9+5\sqrt{3}}{\sqrt{2}}\)

\(=\dfrac{20-18}{\sqrt{2}}=\sqrt{2}\)

c: \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3+3-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}=1\)

d: \(A=\left(\sqrt{5}-1\right)\cdot\sqrt{6+2\sqrt{5}}\)

\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)

Bài 1: Tìm x để căn thức sau có nghĩaa)\(\sqrt{x-3}\)    b) \(\sqrt{-3x}\)    c) \(\sqrt{\frac{5}{x+1}}\)    d) \(\sqrt{\frac{-10}{x^2+1}}\)Bài 2: Tínha) 3\(\sqrt{\left(-3\right)^2}\)    b) -5 \(\sqrt{\left(-2\right)^4}\)     c) \(\sqrt{\sqrt{\left(-10\right)^8}}\)    d) 2\(\sqrt{\left(-3\right)^4}\)\(+\)3\(\sqrt{\left(-2\right)^2}\)Bài 3: Rút gọna)\(\sqrt{\left(2+\sqrt{5}\right)^2}\)   b) \(\sqrt{\left(2-\sqrt{5}\right)^2}\)   c)...
Đọc tiếp

Bài 1: Tìm x để căn thức sau có nghĩa

a)\(\sqrt{x-3}\)    b) \(\sqrt{-3x}\)    c) \(\sqrt{\frac{5}{x+1}}\)    d) \(\sqrt{\frac{-10}{x^2+1}}\)

Bài 2: Tính

a) 3\(\sqrt{\left(-3\right)^2}\)    b) -5 \(\sqrt{\left(-2\right)^4}\)     c) \(\sqrt{\sqrt{\left(-10\right)^8}}\)    d) 2\(\sqrt{\left(-3\right)^4}\)\(+\)3\(\sqrt{\left(-2\right)^2}\)

Bài 3: Rút gọn

a)\(\sqrt{\left(2+\sqrt{5}\right)^2}\)   b) \(\sqrt{\left(2-\sqrt{5}\right)^2}\)   c) 2\(\sqrt{7}\)+\(\sqrt{\left(2-\sqrt{7}\right)^2}\) d) 3\(\sqrt{\left(x-5\right)^2}\) với x < 5

e)\(\sqrt{\frac{9+4\sqrt{5}}{\left(\sqrt{5+2}\right)^2}}\)     f)\(\sqrt{\frac{\sqrt{9-4\sqrt{5}}-\sqrt{5}}{2}}\)+ 5

Bài 4: Tìm x biết:

a)\(\sqrt{4x^2}\)= 8     b) \(\sqrt{1+4x+4x^2}\)\(=\)\(7\)    c)\(\sqrt{x^4}\)\(=\)\(3\)

Bài 5: Phân tích đa thức thành nhân tử

a) x2 -2      b) x2\(-\)2\(\sqrt{3}\)\(\times\)x \(+\)3

Bài 6: Chứng minh a\(\in\)z , b\(\in\)z

A=\(\sqrt{A-2\sqrt{5}}\)\(-\)\(\sqrt{6+2\sqrt{5}}\)   B=\(\frac{\sqrt{3-2\sqrt{2}}}{17-12\sqrt{2}}\)\(-\)\(\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

1
5 tháng 8 2017

giúp mik vs thứ 2 mik nộp rr huhu

16 tháng 9 2019

a) \(\sqrt{x-1}+\sqrt{2x-1}=5\)

\(\Leftrightarrow3x-2+2\sqrt{\left(x-1\right)\left(2x-1\right)}=25\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(2x-1\right)}=25-3x+2\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(2x-1\right)}=-3x+27\)

Bình phương 2 vế, ta được:

\(\Leftrightarrow4\left(x-1\right)\left(2x-1\right)=9\left(x-9\right)^2\)

\(\Leftrightarrow8x^2-4x-8x+4=9x^2-162x+729\)

\(\Leftrightarrow8x^2-12x+4-9x^2+162x-729=0\)

\(\Leftrightarrow-x^2+150x-725=0\)

\(\Leftrightarrow x^2-150x+725=0\)

\(\Leftrightarrow\left(x-145\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-145=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=145\left(ktm\right)\\x=5\left(tm\right)\end{cases}}\)

\(\Rightarrow x=5\)

b) \(x+\sqrt{2x-1}-2=0\)

\(\Leftrightarrow\sqrt{2x-1}=2-x\)

Bình phương 2 vế, ta được:

\(\Leftrightarrow2x-1=4-4x^2+x^2=0\)

\(\Leftrightarrow2x-1-4+4x-x^2=0\)

\(\Leftrightarrow6x-5-x^2=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

18 tháng 8 2020

lên hỏi đáp 247 hỏi cho nhanh !