Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- a,2^0+2^1+2^2+...+2^2005 2A=2^0.2+2^1.2...+2^2005.2 2^1+2^2+...+2^2006 2A=2A-A=>[2^1+2^2...2^2006]-[2^0+2^1+2^2+...2^2005] A=[2^2006-2^0]:1
ta sẽ xét S chia 13 và 2 (vì 13 và 2 là 2 số nguyên tố cùng nhau)
Vì S là một lũy thừa của 3 nên S chia 2 dư 1
Xét S chia 13
Ta có:S=3+32+33+34+.....+31998+31999
S=3.(1+3+32)+34.(1+3+32)+.......+31997.(1+3+32)
S=3.13+34.13+......+31997.13
S=13.(3+34+....+31997)⋮13
Vì S chia 2 dư 1 và S⋮13
nên S chia 26 dư 1
Nhớ tick cho mình nha!!!!!!!!!!!!
Ta có:
\(S=(3+3^2+3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10}+3^{11}+3^{12}) +...+(3^{1993}+3^{1994}+3^{1995}+3^{1996}+3^{1997}+3^{1998})+3^{1999}\)(333 nhóm)
=3.364+37.364+...+31993.364+31999=364.(3+37+...+31993)+31999 chia 26 dư 1
a) S1 = 2 - 4 + 6 - 8 + ... + 1998 - 2000
= ( 2 - 4 ) + ( 6 - 8 ) + ... + ( 1998 - 2000 )
= -2 + -2 + ... + -2
S1 có số số hạng là : ( 2000 - 2 ) : 2 + 1 = 1000 ( số hạng )
S1 có số cặp là : 1000 : 2 = 500 ( cặp )
Vậy S1 có tổng là : 500 . ( -2 ) = -1000
b) S2 = 2 - 4 - 6 + 8 + 10 - 12 - 14 + 16 + ... + 1994 - 1996 -1998 + 2000
S2 = ( 2 - 4 - 6 + 8 ) + ( 10 - 12 - 14 + 16 ) + ... + ( 1994 - 1996 - 1998 + 2000 )
S2 = 0 + 0 + .... + 0
Vậy S2 = 0
Ta thấy : 12 \(⋮\)3, 15 \(⋮\)3, 21\(⋮\)3 do đó \(A\)\(⋮\)3 chỉ khi \(x\)\(⋮\)3.
Điều này nghĩa là x chia hết cho 3 .
Vậy x = 3k với k\(\in\)N .
Để \(A\)không chia hết cho 3 chỉ khi x không chia hết cho 3 .
Vậy nghĩa là x chia cho 3 có số dư khác 0 .
Vậy x = 3k + r với k,r \(\in\)N và 0 < r < 3 .
ta có A=12+15+21+x
A=48+x
để A chia hết cho 3 thì A=4+8+x chia hết cho 3
A=12+x chia hết cho 3
suy ra x thuộc {0;3;6;9}
để A ko chia hết cho 3 thì A ko thuộc {0;3;6;9}
k mink nhé