K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

vi x^4>=0

vi x^2>=0

nen x^4+x^2+1 vo nghiem
 

11 tháng 9 2018

hỏi nữa đi bạn

9 tháng 4 2016

ai ủng hộ bài này cái

9 tháng 4 2016

khó quá!

5 tháng 9 2016

a) \(A=x^2-x+\frac{3}{4}\)

\(A=x^2-x+\frac{1}{4}+\frac{1}{2}\)

\(A=\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\)

=> Đa thức trên không có nghiệm

b) \(A=\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Dấu = xyả ra khi: \(x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Vậy: \(Min_A=\frac{1}{2}\) tại \(x=\frac{1}{2}\)

5 tháng 9 2016

a)A=x2-x+3/4=x2-2*x*1/2+1/4+2/4=(x-1/2)^2+1/2

Ta có: (x-1/2)^2>=0(với mọi x)

=> (x-1/2)^2+1/2>=1/2(với mọi x)

hay A#0(với mọi x)

Do đó, đa thức A không có nghiệm

b)(x-1/2)^2+1/2>=1/2(với mọi x)

hay A>=1/2(với mọi x)

Do đó, GTNN của A là 1/2 khi:

x-1/2=0

x=0+1/2

x=1/2

Vậy GTNN của A là 1/2 khi x=1/2

31 tháng 7 2019

Ta có \(f\left(x\right)=x^4+x^3+4x^2+3x+3\)

\(=x^2\left(x+\frac{1}{2}\right)^2+\frac{15}{4}x^2+3x+3\)

\(=x^2\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\left(x+\frac{2}{5}\right)^2+\frac{12}{5}>0\) với mọi \(x\inℝ\)

Vậy đa thức trên vô nghiệm

5 tháng 5 2018

    x2 + 4x + 2018

=> x2 + 2×2x +22 + 2014

=> (x+2)2 + 2014

=> (x+2)2 >= 0

VÀ 2014 > 0

=> (x+2) + 2014 > 0

=>x2 + 4x +2018 ko có nghiệm

K MK NHA . CHÚC BẠN HỌC GIỎI

ĐÚNG 100% NHA

5 tháng 5 2018

Ta có :  \(x^2+4x+2018\)

\(=\left(x^2+4x+4\right)+2014\)

\(=\left(x+2\right)^2+2014\)

Mà  \(\left(x+2\right)^2\ge0\)

\(\Rightarrow\) đa thức trên luôn lớn hơn hoặc bằng 2014

Vậy đa thức trên vô nghiệm

1 tháng 9 2015

vì delta âm

=> biểu thức ko có nghiệm

2 tháng 5 2016

f(x) = x2 -x-x + 3

  = (x2 - x) - x+3

= x(x-1)- x+1+2

=x(x-1) - (x-1) + 3

= (x-1)(x-1) +3

= (x-1)2+3

có (x-1 )2 lớn hơn hoặc = 0

 suy ra (x-1)2 + 3 lớn hơn 0; suy ra đa thức này vô nghiệm

nhớ k đấy

3 tháng 9 2016

1)

a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)

\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)

=>đpcm

b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2=-24\)

=>đpcm

2,

a) \(5x\left(12x+7\right)-3x\left(20x-5\right)=-100\)

\(\Leftrightarrow60x^2+35x-60x^2+15x=-100\)

\(\Leftrightarrow50x=-100\)

\(\Leftrightarrow x=-2\)

b) \(0,6x\left(x-0,5\right)-0,3x\left(2x+1,3\right)=0,138\)

\(\Leftrightarrow0,6x^2-0,3x-0,6x^2-0,39x=0,138\)

\(\Leftrightarrow-0,69x=0,138\)

\(\Leftrightarrow x=-0,2\)

3 tháng 9 2016

Câu 1:

a)\(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^2-x+3\right)\)

\(=2x^2+x-x^3-2x^2+x^2-x+3\)

\(=x^3+3\)(ko thể CM)

b)\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

\(=-24\)(đpcm)