Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = x2 -x-x + 3
= (x2 - x) - x+3
= x(x-1)- x+1+2
=x(x-1) - (x-1) + 3
= (x-1)(x-1) +3
= (x-1)2+3
có (x-1 )2 lớn hơn hoặc = 0
suy ra (x-1)2 + 3 lớn hơn 0; suy ra đa thức này vô nghiệm
nhớ k đấy
1)
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
=>đpcm
b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2=-24\)
=>đpcm
2,
a) \(5x\left(12x+7\right)-3x\left(20x-5\right)=-100\)
\(\Leftrightarrow60x^2+35x-60x^2+15x=-100\)
\(\Leftrightarrow50x=-100\)
\(\Leftrightarrow x=-2\)
b) \(0,6x\left(x-0,5\right)-0,3x\left(2x+1,3\right)=0,138\)
\(\Leftrightarrow0,6x^2-0,3x-0,6x^2-0,39x=0,138\)
\(\Leftrightarrow-0,69x=0,138\)
\(\Leftrightarrow x=-0,2\)
Câu 1:
a)\(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^2-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^2-x+3\)
\(=x^3+3\)(ko thể CM)
b)\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)(đpcm)
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
( x2 + 2x+3 ) ( 3x2 - 2x + 1 ) - 3x2 ( x2 + 2) - 4x ( x2 - 1 )
=x2( 3x2 - 2x + 1 )+2x( 3x2 - 2x + 1 )+3( 3x2 - 2x + 1 )-3x4-6x2-4x3+4x
=3x4-2x3+x2+6x3-4x2+2x+9x2-6x+3-3x4-4x3-6x2+4x
=3
a)A=(x+1)(x2-x+1)-(x-1)(x2+x+1)
=x3-x2+x+x2-x+1-x3-x2-x+x2+x+1
=2
b)B=(x-1)3-x3+3x2-3x-1
= x3-3x2+3x-1-x3+3x2-3x-1
=2
Vậy 2 biểu thức trên không phụ thuộc vào x
a) Ta có A = (x + 1)(x2 - x + 1) - (x - 1)(x2 + x + 1)
=> A = (x3 - x2 + x) + (x2 - x + 1) - (x3 - x2 + x) + (-x2 + x + 1)
=> A = x3 - x2 + x + x2 - x + 1 - x3 + x2 - x - x2 + x + 1
=> A = x3 - x3 - x2 + x2 - x2 + x2 + x - x - x + x + 1 + 1
=> A = 1 + 1 = 2
Vậy giá trị của biểu thức A kho phụ thuộc vào x
b) B = (x - 1)3 - x3 + 3x2 - 3x - 1
a)
\(A=x^3-1-x^3+1=0\)
b)
\(B=x^3-3x^2+3x-1-x^3+3x^2-3x-1=-2\)
a)Ta có:A=(x+1)(x2-x+1)-(x-1)(x2+x+1)
=>A=x3+1-(x3-1)=x3+1-x3+1=2
=>giá trị của A không phụ thuộc vào x
b)Ta có:B=(x-1)3-x3+3x2-3x-1
=>B=x3-3x2+3x-1-x3+3x2-3x-1=-1-1=-2
=>giá trị của B không phụ thuộc vào x
Ta có \(f\left(x\right)=x^4+x^3+4x^2+3x+3\)
\(=x^2\left(x+\frac{1}{2}\right)^2+\frac{15}{4}x^2+3x+3\)
\(=x^2\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\left(x+\frac{2}{5}\right)^2+\frac{12}{5}>0\) với mọi \(x\inℝ\)
Vậy đa thức trên vô nghiệm