Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình viết gọn thôi nhé , tại nhiều câu quá ^^
a/ \(\left(x+1\right)\left(1-y\right)=2\)
b/ \(\left(x+2\right)\left(y-1\right)=13\)
c/ \(\left(x-2\right)\left(y+3\right)=1\)
d/ \(\left(x-1\right)\left(y-1\right)=3\)
e/ \(\left(2x-y\right)\left(x+2y\right)=7\)
Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^
vết tn mk ko hiểu tại sao lại phân tích như vậy
còn cách tìm nghiệm thì mk pit
Truy cập link để nhận thẻ cào 50k free :
http://123link.vip/7K2YSHxh
Nhanh không cả hết !
Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)
Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)
Mà y là số nguyên không âm nên y = 0
Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy (x, y) = { (0; 0); (1; 0) }
\(x^2+x+3=y^2\)
<=> 4 ( x2+x+3) = 4y2
<=> 4x2+4x+12=4y2
<=> 4x2+4x+1+11-4y2=0
<=> (2x+1)2-4y2= -11
<=> ( 2x +1 -2y) (2x+1+2y)=-11
Vì x,y thuộc Z nên 2x+1-2y và 2x+1+2y thuộc Z
=> 2x+1-2y thuộc Ư(11) và 2x +1+2y thuộc Ư(11)
Mà Ư(11)= { 1;-1;11;-11}
Ta có:
TH1: \(\begin{cases}2x+1-2y=1\\2x+1+2y=-11\end{cases}=>2x+1-2y+2x+1+2y=1+\left(-11\right)< =>4x+1=-10\)
< => x=\(\frac{-11}{4}\)( Không là số nguyên nên loại)
TH2: \(\hept{\begin{cases}2x+1-2y=-1\left(1\right)\\2x+1+2y=11\end{cases}=>2x+1-2y+2x+1+2y=-1+11}\)
<=> 4x+2=10 <=> x= 2 ( Là số nguyên )
Thay x=2 vào (1) ta có 2.2+1-2y=-1 <=> y= 3 ( là số nguyên )
TH3: \(\hept{\begin{cases}2x+1-2y=11\\2x+1+2y=-1\end{cases}}\)
Th4\(\hept{\begin{cases}2x+1-2y=-11\\2x+1+2y=1\end{cases}}\)
Trường hợp 3 và 4 bạn tự tính nhé!! Nếu x, y là số nguyên thì chọn , còn ko là số nguyên thì loại nhé!!
Học tốt ạ
Đặt \(xy-12x+15y\)là (*)
Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)
Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)
Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)
Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)
\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)
\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Với \(x=3;y=2\)thay vào (*) ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)
Với \(x=5;y=3\)thay vào (*) ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)
Vậy .....