Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
2M=2+22+23+...+22013
ta có
2M-M=(2+22+23+...+22013)-(1+2+22+...+22012)
M=22013-1
\(N=1+2^2+2^3+...+2^{2012}\)
\(\Rightarrow2N=2.\left(1+2^2+2^3+...+2^{2012}\right)\)
\(\Rightarrow2N=2+2^2+2^3+2^4+....+2^{2013}\)
\(\Rightarrow2N=1+2+2^2+2^3+....+2^{2012}+2^{2013}-1\)
\(\Rightarrow2N=N+2^{2013}-1\)
\(\Rightarrow N=2^{2013}-1\)
\(\Rightarrow\)22013-1
22014-2
= 1
\(2N=2+2^3+2^4+...+2^{2013}\)
\(2N-N=\left(2+2^3+2^4+...+2^{2013}\right)-\left(1+2^2+2^3+...+2^{2012}\right)\)\(N=2+2^{2013}-\left(1+2^2\right)\)
\(=2^{2013}+2-5=2^{2013}-3\)
Đặt N = 1 + 2 + 22 +...+ 22012
2N = 2 + 22 + 23 +...+ 22013
2N - N = (2 + 22 + 23+....+ 22013) - (1 + 2 + 22 +....+ 22012)
N = 22013 - 1
Thay N vào M ta được:
\(M=\frac{2^{2013}-1}{2^{2014}-2}=\frac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\frac{1}{2}\)
Đặt A=1+2+22+23+............+22012
2A=2+22+23+............+22013
2A-A=(2+22+23+......+22013)-(1+2+22+...........+22012)
2A-A=22013-1
=>A=22013-1
Trở lại bài toán,ta có:
\(\frac{1+2+2^2+2^3+.............+2^{2012}}{2^{2014}-2}\)
=\(\frac{2^{2013}-1}{2^{2013}.2-2}\)
=\(\frac{2^{2013}-1}{2\left(2^{2013}-1\right)}\)
=\(\frac{1}{2}\)
Đặt A=1+2+22+...........+22012
2A=2+22+23+...........+22013
2A-A=(2+22+23+...........+22013)-(1+2+22+............+22012)
2A-A=22013-1
=>A=22013-1
Trở lại bài toán,ta có:
M=\(\frac{1+2+2^2+........+2^{2012}}{2^{2014}-2}\)
=\(\frac{2^{2013}-1}{2.2^{2013}-2}=\frac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\frac{1}{2}\)
Vậy M=\(\frac{1}{2}\)
Đặt A = 1 + 2 + 22 + ...... + 22012
=> 2A = 2 + 22 + ...... + 22013
=> 2A - A = 22013 - 1
Nên : \(\frac{1+2+2^2+.....+2^{2012}}{2^{2014}-1}=\frac{2^{2013}-1}{2^{2014}-1}\)