Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách làm khác cho bài 2:
Hình vẽ: post-185288-0-41757700-1601727315.png (610×487).
Nếu \(\Delta\) // BC thì ta dễ có đpcm.
Xét trường hợp đường thẳng \(\Delta\) không song song với BC:
Gọi A' là giao điểm của \(\Delta\) và BC.
Áp dụng định lý Menelaus cho \(\Delta A'BB'\) với sự thẳng hàng của A, C, C' ta có:
\(\frac{A'C}{BC}.\frac{BA}{B'A}.\frac{B'C'}{A'C'}=1\)
\(\Rightarrow\frac{AB}{AB'}=\frac{A'C'.BC}{B'C'.A'C}\). (1)
Áp dụng định lý Menelaus cho \(\Delta A'MM'\) với sự thẳng hàng của A, C, C' ta có:
\(\frac{A'C}{MC}.\frac{MA}{M'A}.\frac{M'C'}{A'C'}=1\).
\(\Rightarrow MC=\frac{MA.M'C'.A'C}{M'A.A'C'}\). (2)
Nhân vế với vế của (1) và (2) ta được:
\(MC.\frac{AB}{AB'}=BC.\frac{MA}{MA'}.\frac{M'C'}{B'C'}\). (*)
Tương tự, \(MB.\frac{AC}{AC'}=BC.\frac{MA}{MA'}.\frac{M'B'}{B'C'}\). (**)
Cộng vế với vế của (*) và (**) ta có đpcm.
2: Cho tam giác ABC và điểm M thuộc đoạn BC. Một đường thẳng bất kì cắt các đoạn AB, AC, AM tại các điểm B',C',M'. - Hình học - Diễn đàn Toán học
Dựa theo đề bài ta có hình vẽ: A B C M N I
Ta có: MA = 2MB; BN = 5CN => BN = 5/6 BC
Có \(\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}=-\overrightarrow{BA}+\frac{5}{6}\overrightarrow{BC}\)
Áp dụng định lí menelaus cho tam giác ABN
\(\frac{MA}{MB}.\frac{CB}{CN}.\frac{IN}{IA}=1\)=> \(\frac{2}{1}.\frac{6}{1}.\frac{IN}{IA}=1\Rightarrow IA=12IN\)=> \(\overrightarrow{AI}=\frac{12}{13}\overrightarrow{AN}\)
Ta có: \(\overrightarrow{BI}=\overrightarrow{BA}+\overrightarrow{AI}=\overrightarrow{BA}+\frac{12}{13}\overrightarrow{AN}=\overrightarrow{BA}+\frac{12}{13}\left(-\overrightarrow{BA}+\frac{5}{6}\overrightarrow{BC}\right)\)rút gọn tính tiếp nhé