Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất đẳng thức trung bình cộng và trung bình nhân – Wikipedia tiếng Việt
Đặt vế trái biểu thức là P
- Nếu một trong các số bằng 0 thì biểu thức vô nghĩa
- Nếu một trong các số bằng 1 thì vế trái lớn hơn 1 nên đẳng thức ko xảy ra
- Nếu tất cả các số đều lớn hơn 1, không mất tính tổng quát, giả sử \(a_1< a_2< ...< a_n\)
\(\Rightarrow a_1\ge2;a_2\ge3;...;a_n\ge n+1\)
\(\Rightarrow P=\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_n^2}\le\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{\left(n+1\right)^2}\)
\(\Rightarrow P< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\)
\(\Rightarrow P< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}< 1\)
\(\Rightarrow\) Không thể tồn tại đẳng thức \(P=1\)
Do \(a_1;a_2;...a_n\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}0\le a_1\le1\\0\le a_2\le1\\...\\0\le a_n\le1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a_1\left(1-a_1\right)\ge0\\a_2\left(1-a_2\right)\ge0\\...\\a_n\left(1-a_n\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a_1\ge a_1^2\\a_2\ge a_2^2\\...\\a_n\ge a_n^2\end{matrix}\right.\)
\(\Rightarrow a_1^2+a_2^2+...+a_n^2\le a_1+a_2+...+a_n\)
Do đó ta chỉ cần chứng minh:
\(\left(1+a_1+a_2+...+a_n\right)^2\ge4\left(a_1+a_2+...+a_n\right)\)
\(\Leftrightarrow1+2\left(a_1+a_2+...+a_n\right)+\left(a_1+a_2+...+a_n\right)^2\ge4\left(a_1+a_2+...+a_n\right)\)
\(\Leftrightarrow\left(a_1+a_2+...+a_n\right)^2-2\left(a_1+a_2+...+a_n\right)+1\ge0\)
\(\Leftrightarrow\left(a_1+a_2+...+a_n-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra tại \(\left(a_1,a_2,...,a_n\right)=\left(0,0,..,1\right)\) và các hoán vị
a: \(\Leftrightarrow\left\{{}\begin{matrix}x+3y=5\\2x-y=6\end{matrix}\right.\)=>x=23/7; y=4/7
b: \(2\cdot\overrightarrow{A}+3\cdot\overrightarrow{B}\)
\(=\left(2\cdot1+3\cdot3;2\cdot2+3\cdot\left(-1\right)\right)\)
=(11;1)
c: \(\overrightarrow{A}\cdot\overrightarrow{B}=\left(3;-2\right)\)