K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔOAB cân tại O

mà OE là đường cao

nên OE\(\perp\)AB

Xét tứ giác OECN có \(\widehat{OEC}+\widehat{ONC}=90^0+90^0=180^0\)

nên OECN  là tứ giác nội tiếp

=>O,E,C,N cùng thuộc một đường tròn

b: Xét (O) có

\(\widehat{CNA}\) là góc tạo bởi tiếp tuyến NC và dây cung NA

\(\widehat{ABN}\) là góc nội tiếp chắn cung AN

Do đó: \(\widehat{CNA}=\widehat{ABN}\)

Xét ΔCNA và ΔCBN có

\(\widehat{CNA}=\widehat{CBN}\)

\(\widehat{NCA}\) chung

Do đó: ΔCNA~ΔCBN

=>\(\dfrac{CN}{CB}=\dfrac{CA}{CN}\)

=>\(CN^2=CA\cdot CB\)

c: Xét ΔOCN vuông tại N có NH là đường cao

nên \(CH\cdot CO=CN^2\)

=>\(CH\cdot CO=CA\cdot CB\)

=>\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)

Xét ΔCHA và ΔCBO có

\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)

\(\widehat{HCA}\) chung

Do đó: ΔCHA~ΔCBO

=>\(\widehat{CHA}=\widehat{CBO}\)

mà \(\widehat{CBO}=\widehat{OAB}\)(ΔOAB cân tại O)

nên \(\widehat{CHA}=\widehat{OAB}\)

 

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O) e) Đường thẳng qua D  song...
Đọc tiếp

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Cho điểm A nằm ngoài đường tròn (O;R), từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE (B, C là hai tiếp điểm, O nằm trong góc BAE). BC cắt OA tại I 
a) Chứng minh: tứ giác ABOC nội tiếp và OA vuông góc với BC 
b) Chứng minh OI.IA=(BC^2)/4 và AB.AC = AD.AE 
c) Vẽ đường kính BK của (O), Tia KD cắt OA tại F. Chứng minh FB vuông góc với EB 
d) Gọi H là trung điểm của DE, từ B kẻ dây BN song song với DE. Chứng minh 3 điểm N, H, C thẳng hàng. 

3. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

Giúp em giai  cau 1 d, cau 2 c, câu 3 c , cảm ơn nhiều

2
14 tháng 4 2016
2c. ta co goc CAO=OAB=OBC=KDC(goc noi tiep chan cung KC) =>tu giac CDFA noi tiep =>goc ADF=ACF lai co goc ADF=KDE=EBK (goc noi tiep chan cung EK) goc ACF=ABF ( B,C doi xung qua OA) =>goc EBK=ABF ma ABF + KBF =90 => EBK+KBF =90 => EBF=90 =>EB vuong goc voi BF
15 tháng 4 2016

cam on ban nha

con cau 3c giup minh duoc ko

1 . Cho M nằm ngoài (O;R). Tia MO cắt (O) lần lượt tại A và B. Gọi K là điểm nằm giữa O và B. Vẽ đường thẳng d AB tại K. Tiếp tuyến MC với (O) cắt d tại D (C là tiếp điểm), BC cắt d tại N.a) Chứng minh: CDKO nội tiếp.b) Chứng minh MC2 =MA. MB.c) Chứng minh: DCN cân.d) Gọi F là giao điểm của AD và (O), E là giao điểm của AC và d. Chứng minh: D, E, C, F cùng nằm trên một đường tròn. 2 . co đường...
Đọc tiếp

1 . Cho M nằm ngoài (O;R). Tia MO cắt (O) lần lượt tại A và B. Gọi K là điểm nằm giữa O và B. Vẽ đường thẳng d AB tại K. Tiếp tuyến MC với (O) cắt d tại D (C là tiếp điểm), BC cắt d tại N.

a) Chứng minh: CDKO nội tiếp.

b) Chứng minh MC2 =MA. MB.

c) Chứng minh: DCN cân.

d) Gọi F là giao điểm của AD và (O), E là giao điểm của AC và d. Chứng minh: D, E, C, F cùng nằm trên một đường tròn. 

2 . 

co đường tròn (O;R) và điểm S sao cho SO=2R . vẽ các tiếp tuyến SA, SB của đường tròn (O;R) (A,B là các tiếp điểm ) , và cát tuyến SMN ( không qua O) . gọi I là trung điểm của MN.

a/ chứng minh 5 điểm S,A,O,I,B cùng thuộc moottj đường tròn

b/ chứng minh SA2 = SM.SN

c/ tính SM và SN theo R khi MN= SA

d/ kẻ MH⊥OA , MH cát AN, AB tại D và E . chứng minh tứ giác IEMB nội tiếp đường tròn

e/ tính chu vi và diện tích hnhf phẳng giới hạn bởi SA, SB và cung AB

 

1
21 tháng 4 2020

Bài 1 : 

M A C D E F N K O B

a.Ta có MC là tiếp tuyến của (O)

\(\Rightarrow MC\perp OC\)

Mà \(MK\perp KD\Rightarrow\widehat{MCO}=\widehat{MKD}=90^0\Rightarrow OCDK\) nội tiếp 

b.Vì MC là tiếp tuyến của (O) 

\(\Rightarrow\widehat{MCA}=\widehat{MBC}\Rightarrow\Delta MCA~\Delta MBC\left(g.g\right)\)

\(\Rightarrow\frac{MC}{MB}=\frac{MA}{MC}\Rightarrow MC^2=MA.MB\)

c . Vì MO∩(O)=AB \(\Rightarrow AB\) là đường kính của (O)

\(\Rightarrow AC\perp BC\Rightarrow\widehat{BCD}+\widehat{MCA}=90^0\Rightarrow\widehat{BCD}=90^0-\widehat{MCA}\)

Mà \(\widehat{MCA}=\widehat{MBC}\Rightarrow\widehat{MCD}=90^0-\widehat{ABN}=\widehat{BNK}=\widehat{CND}\)

\(\Rightarrow\Delta DCN\) cân 

d ) Ta có : \(\widehat{BFD}=90^0=\widehat{BKD}\) vì AB là đường kính của (O)

\(\Rightarrow BKFD\) nội tiếp 

\(\Rightarrow\widehat{FDK}=\widehat{KBF}=\widehat{ABC}+\widehat{CBF}=\widehat{MCA}+\widehat{FCD}=\widehat{DCE}\)

\(+\widehat{FCD}=\widehat{FCE}\)

Vì MC là tiếp tuyến của (O)

\(\Rightarrow CEDF\) nội tiếp