Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[-a^5.\left(-a^5\right)\right]^2+\left[-a^2.\left(-a^2\right)\right]^5=0\)O
=>\(\left(-a^{10}\right)^2+\left(-a^4\right)^5=a^{20}-a^{20}=0\)
\(B;\left(-1\right)^n.a^{a+k}=\left(-a\right)^n.a^k\)
\(=\left(-1\right)^n.a^n.a^k=\left(-1.a\right)^n.a^k\)
=\(\left(-a^n\right).a^k\)
\(1:\left[\left(-a\right)^5.\left(-a\right)^5\right]^2+\left[\left(-a\right)^2.\left(-a\right)^2\right]^5=0\)
\(\Rightarrow\left[\left(-a\right)^{10}\right]^2+\left[\left(-a\right)^4\right]^5=1:0\)
=>Đề sai bạn xem lại nha
Chúc bn học tốt
câu 1 : bn tự lm đi nha
câu 2 : ta có : \(\left(x^2+5\right).\left(x^2-25\right)=0\Leftrightarrow\left(x^2+5\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\left(tm\right)\) vậy \(m=\pm5\)
b) ta có : \(\left(x-5\right)\left(x^2-25\right)< 0\Leftrightarrow\left(x-5\right)^2\left(x+5\right)< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+5< 0\\x-5\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -5\\x\ne5\end{matrix}\right.\) \(\Rightarrow x< -5\)
\(\Rightarrow x=\left\{x\in Z\backslash x< -5\right\}\)
1/
a)a=1 hoặc a=-1
b)a=0
c)\(\left|a\right|=10\) => a=10 hoặc a=-10
d)\(\left|a\right|=-85:\left(-17\right)=5\) =>a=-5 hoặc a=5
e)a=-5 hoặc a=5
2/
a)\(\left(x^2+5\right)\left(x^2-25\right)=0\)
1/\(x^2+5=0\)
\(\Leftrightarrow x^2=-5\)(không thõa mãn)
2/\(x^2-25=0\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=5\) hoặc \(x=-5\)
vậy phương trình đã cho có tập nghiệm S={-5;5}
b)\(\left(x-5\right)\left(x^2-25\right)< 0\)
\(1)x-5< 0\Leftrightarrow x< 5\)
\(2)x^2-25< 0\Leftrightarrow x^2< 25\Leftrightarrow x< -5\)
vậy bất phương trình đã cho có {x\(|\)x<5}
A, 2x/a/= 20
/a/= 20: 2
/a/= 10
=> a= 10 hoặc a= -10
vậy a= 10 hoặc a= -10
Bài 3 :
a : 5 dư 2 => a = 2 hoặc a = 7.
b : 5 dư 5 => b chia hết cho 5
- Với a = 2 thì ab chia hết cho 5 do b chia hết cho 5.
- Với a = 7 thì ab chia hết cho 5 do b chia hết cho 5.
Vậy số dư của ab : 5 là 0
\(\Leftrightarrow-a^{10}+a^{20}=0\)
=>a(a-1)(a+1)=0
hay \(a\in\left\{0;-1;1\right\}\)
`<=>(a^5. a^5)+[-(a^2. a^2)]^5=0`
`<=>a^10-a^20=0`
`<=>a^10(1-a^10)=0`
`<=>a^10=0` hoặc `1-a^10=0`
`<=>a=0` hoặc `a=1` hoặc `a=-1`