Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
a,vìx^2+1>0
suy ra x-2<0
suy ra x<2
b,(x-xy )+5y-10=0
suy ra x(1-y)+-5(1-y)=5
suy ra (x-5)(1-y)=5
uocs của 5
1) (x^2 - 1)(x^2 - 4)(x^2 - 7)(x^2 - 10) < 0
<=> [(x^2 - 1)(x^2 - 10)][(x^2 - 4)(x^2 - 7)] < 0
<=> (x^4 - x^2 - 10x^2 + 10)(x^4 - 4x^2 - 7x^2 + 28) < 0
<=> (x^4 - 11x^2 + 10)(x^4 - 11x^2 + 28) < 0
=> x^4 - 11x^2 + 10 và x^4 - 11x^2 + 28 là 2 số trái dấu
Mà x^4 - 11x^2 + 10 < x^4 - 11x^2 + 28
Nên \(\left\{\begin{matrix}x^4-11x^2+10< 0\\x^4-11x^2+28>0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\left(x^2-\frac{11}{2}\right)^2-\frac{81}{4}< 0\\\left(x^2-\frac{11}{2}\right)^2-\frac{9}{4}>0\end{matrix}\right.\)\(\Leftrightarrow\frac{9}{4}< \left(x^2-\frac{11}{2}\right)^2< \frac{81}{4}\)
\(\Rightarrow\left[\begin{matrix}\frac{3}{2}< x^2-\frac{11}{2}< \frac{9}{2}\\-\frac{3}{2}>x^2-\frac{11}{2}>-\frac{9}{2}\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}7< x^2< 10\\4>x^2>1\end{matrix}\right.\)
do \(x\in Z\Rightarrow x^2\in N\)=> x2 = 9\(\Rightarrow\left[\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy x = 3; x = -3
2) A = |x - a| + |x - b| + |x - c| + |x - d|
A = |x - a| + |x - b| + |c - x| + |d - x|\(\le\)
|x - a + x - b + c - x + d - x|= |c - a + d - b|
= c - a + d - b ( vì c - a > 0; d - b > 0)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-a\ge0\\x-b\ge0\\x-c\le0\\x-d\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}a\le x\\b\le x\\c\ge x\\d\ge x\end{matrix}\right.\)
Vậy Min A = c - a + d - b khi \(\left\{\begin{matrix}a\le x\\b\le x\\c\ge x\\d\ge x\end{matrix}\right.\); a < b < c < d
\(\left\{\begin{matrix}a\le x\\b\le x\\c\ge x\\d\ge x\end{matrix}\right.;a< b< c< d}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
câu 1 : bn tự lm đi nha
câu 2 : ta có : \(\left(x^2+5\right).\left(x^2-25\right)=0\Leftrightarrow\left(x^2+5\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\left(tm\right)\) vậy \(m=\pm5\)
b) ta có : \(\left(x-5\right)\left(x^2-25\right)< 0\Leftrightarrow\left(x-5\right)^2\left(x+5\right)< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+5< 0\\x-5\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -5\\x\ne5\end{matrix}\right.\) \(\Rightarrow x< -5\)
\(\Rightarrow x=\left\{x\in Z\backslash x< -5\right\}\)
1/
a)a=1 hoặc a=-1
b)a=0
c)\(\left|a\right|=10\) => a=10 hoặc a=-10
d)\(\left|a\right|=-85:\left(-17\right)=5\) =>a=-5 hoặc a=5
e)a=-5 hoặc a=5
2/
a)\(\left(x^2+5\right)\left(x^2-25\right)=0\)
1/\(x^2+5=0\)
\(\Leftrightarrow x^2=-5\)(không thõa mãn)
2/\(x^2-25=0\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=5\) hoặc \(x=-5\)
vậy phương trình đã cho có tập nghiệm S={-5;5}
b)\(\left(x-5\right)\left(x^2-25\right)< 0\)
\(1)x-5< 0\Leftrightarrow x< 5\)
\(2)x^2-25< 0\Leftrightarrow x^2< 25\Leftrightarrow x< -5\)
vậy bất phương trình đã cho có {x\(|\)x<5}