Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(-1\right)^n\cdot a^{n+k}\)
\(=\left(-1\right)^n\cdot a^n\cdot a^k\)
\(=\left(-1\cdot a\right)^n\cdot a^k\)
\(=\left(-a\right)^n\cdot a^k\)(đpcm)
\(5^4\cdot5^2=5^6\)
\(\left(5^4\right)^2=5^8\)
Do đó: \(5^4\cdot5^2< \left(5^4\right)^2\)
Chứng minh các đẳng thức sau:
a. [ -a . (-a5) ]2 + [ -a2 . ( -a2) ]5 = 0
b.(-1)n . an+k = (-a)n . ak
1. Giá trị của đa thức Q = x2 -3y + 2z tại x = -3 ; y = 0 ; z = 1 là :
A. 11 B. -7 C. 7 D. 2
2. Bậc của đơn thức (- 2x3) 3x4y là :
A.3 B. 5 C. 7 D. 8
3. Bất đẳng thức trong tam giác có các cạnh lần lượt là a,b,c là:
A. a + b > c B. a – b > c C. a + b ≥ c D. a > b + c
4: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 2 cm ; 9 cm ; 6 cm B. 3cm ; 4 cm ; 5 cm
C. 2 cm ; 4 cm ; 4 cm D. 4 cm ; 5 cm ; 7 cm
\(A=\left[-a^5.\left(-a^5\right)\right]^2+\left[-a^2.\left(-a^2\right)\right]^5=0\)O
=>\(\left(-a^{10}\right)^2+\left(-a^4\right)^5=a^{20}-a^{20}=0\)
\(B;\left(-1\right)^n.a^{a+k}=\left(-a\right)^n.a^k\)
\(=\left(-1\right)^n.a^n.a^k=\left(-1.a\right)^n.a^k\)
=\(\left(-a^n\right).a^k\)