Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(5x-2y\right)\left[\left(5x\right)^2+5x\cdot2y+\left(2y\right)^2\right]\)
=(5x)^3-(2y)^3
=125x^3-8y^3
- A=(25x2-10xy+y2)+(y2-2y+1)+2017
A=(5x-y)2+(y-1)2+2017
- Vì (5x-y)2 > 0 với mọi x;y (lớn hơn hoặc bằng nhé!!)
(y-1)2 > 0 với mọi y
=> A > 2017 >0 với mọi x và y
Bài 1:
a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)
\(=x^2-3x+6x-12\)
\(=x^2+3x-12\)
b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
c: \(\left(-2xy+3\right)\left(xy+1\right)\)
\(=-2x^2y^2-2xy+3xy+3\)
\(=-2x^2y^2+xy+3\)
d: \(x\left(xy-1\right)\left(xy+1\right)\)
\(=x\left(x^2y^2-1\right)\)
\(=x^3y^2-x\)
Bài 2:
a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
\(=27\cdot\dfrac{1}{27}+8=9\)
b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)
\(=125x^3-8y^3\)
\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)
=0
\(5x^3-10x^2y+5xy^2\)
=\(5x\left(x^2-2xy+y^2\right)\)
=\(5x\left(x-y\right)^2\)
a. \(3x^2-2x\left(5+1.5x\right)+10\)
\(=3x^2-10x-3x^2+10\)
\(=-10x+10\)
b. \(\left(x^2-2x+3\right)\left(x-4\right)\)
\(=x^3-2x^2+3x-4x^2+8x-12\)
\(=x^3-6x^2+11x-12\)
c. \(\left(5x+2\right)\left(2x^2-3x-1\right)\)
\(=10x^3-15x^2-5x+4x^2-6x-2\)
\(=10x^3-11x^2-11x-2\)
d. \(\left(25x^2+10xy+4y^2\right)\left(5x+2y\right)\)
\(=125x^3+50x^2y+20xy^2+50x^2y+10xy^2+6y^3\)
\(=125x^3+100x^2y+30xy^2+6y^3\)
e. \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=20x^5-4x^4+2x-12x^2-5x^4+x^3-2x^2+3x+10x^3-2x^2+4x-1\)
\(=20x^5-9x^4+9x-16x^2+11x^3+1\)